星形胶质细胞
神经毒性
神经科学
化学
细胞生物学
生物
中枢神经系统
毒性
有机化学
作者
Poonam Goswami,Sonam Gupta,Neeraj Joshi,Sharad Sharma,Sarika Singh
标识
DOI:10.1016/j.etap.2015.06.001
摘要
The present study was conducted to investigate the effect of rotenone on astrocytes activation, their viability and its effect on neuronal death in different brain regions. Rotenone was injected in rat brain by intracerebroventricularly (bilateral) route at dose of 6 μg and 12 μg. In vitro C6 cells were treated with rotenone at concentration of 0.1, 0.25, 0.5, 1 and 2 μM. Rotenone administration to rat brain caused significant astrocytes activation in frontal cortex, cerebellum, cerebellar nucleus, substantia nigra, hypothalamus and hippocampus regions of the rat brain. Rotenone administration also led to significant degeneration of cells in all the studied regions along with altered nuclear morphology assessed by hematoxylin–eosin and cresyl violet staining. Histological staining showed the significantly decreased number of cells in all the studied regions except cerebellar nucleus in dose and time dependant manner. Rotenone administration in the rat brain also caused significant decrease in glutathione levels and augmented nitrite levels. In vitro treatment of rotenone to astrocytic C6 cells caused significantly increased expression of glial fibrillar acidic protein (GFAP) and decreased viability in dose and time dependent manner. Rotenone treatment to C6 cells exhibited significant generation of reactive oxygen species, augmented nitrite level, impaired mitochondrial activity, apoptotic chromatin condensation and DNA damage in comparison to control cells. Findings showed that oxidative stress play a considerable role in rotenone induced astrocyte death that was attenuated with co-treatment of antioxidant melatonin. In conclusion, results showed that rotenone caused significant astrocytes activation, altered nuclear morphology, biochemical alteration and apoptotic cell death in different rat brain regions. In vitro observations in C6 cells showed that rotenone treatment exhibited oxidative stress mediated apoptotic cell death, which was attenuated with co treatment of melatonin.
科研通智能强力驱动
Strongly Powered by AbleSci AI