已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Weight-Adapted Convolution Neural Network for Facial Expression Recognition in Human–Robot Interaction

人工智能 计算机科学 模式识别(心理学) 判别式 卷积神经网络 局部最优 表达式(计算机科学) 预处理器 人工神经网络 面部表情 遗传算法 人口 机器学习 社会学 人口学 程序设计语言
作者
Min Wu,Wanjuan Su,Luefeng Chen,Zhentao Liu,Weihua Cao,Kaoru Hirota
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (3): 1473-1484 被引量:74
标识
DOI:10.1109/tsmc.2019.2897330
摘要

The weight-adapted convolution neural network (WACNN) is proposed to extract discriminative expression representations for recognizing facial expression. It aims to make good use of the convolution neural network's (CNN's) potential performance in avoiding local optima and speeding up convergence by the hybrid genetic algorithm (HGA) with optimal initial population, in such a way that it realizes deep and global emotion understanding in human-robot interaction. Moreover, the idea of novelty search is introduced to solve the deception problem in the HGA, which can expend the search space to help genetic algorithm jump out of local optimum and optimize large-scale parameters. In the proposal, the facial expression image preprocessing is conducted first, then the low-level expression features are extracted by using a principal component analysis. Finally, the high-level expression semantic features are extracted and recognized by WACNN which is optimized by HGA. In order to evaluate the effectiveness of WACNN, experiments on JAFFE, CK+, and static facial expressions in the wild 2.0 databases are carried out by using k -fold cross validation, and experimental results show the recognition accuracies of the proposal are superior to that of the state-of-the-art, such as local directional ternary pattern and weighted mixture deep neural network (DNN), which aim to extract discriminative and are the DNN-based methods. Moreover, recognition accuracies of the proposal are also higher than the deep CNN without HGA, which indicates that the proposal has better global optimization ability. Meanwhile, preliminary application experiments are also carried out by using the proposed algorithm on the emotional social robot system, where nine volunteers and two-wheeled robots experience the scenario of emotion understanding. Application results indicate that the wheeled robots can recognize basic expressions, such as happy, surprise, and so on.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张秋雨发布了新的文献求助10
刚刚
1秒前
yeye发布了新的文献求助10
7秒前
悦耳代亦完成签到 ,获得积分0
9秒前
好好好完成签到,获得积分10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
lizigongzhu应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
略略略完成签到,获得积分10
9秒前
11秒前
yin发布了新的文献求助10
14秒前
15秒前
ZJL发布了新的文献求助10
16秒前
lalala发布了新的文献求助10
16秒前
怡然的一凤完成签到 ,获得积分10
17秒前
22秒前
George发布了新的文献求助10
23秒前
27秒前
小二郎应助缥缈的机器猫采纳,获得10
27秒前
含蓄访梦发布了新的文献求助10
28秒前
大佬应助明芬采纳,获得10
29秒前
NagatoYuki完成签到,获得积分10
30秒前
xuli21315完成签到 ,获得积分10
30秒前
苦兰完成签到,获得积分10
33秒前
在水一方应助mn采纳,获得10
35秒前
38秒前
haha完成签到 ,获得积分10
38秒前
40秒前
41秒前
asdfqwer发布了新的文献求助10
41秒前
你是我爹完成签到 ,获得积分10
42秒前
42秒前
robot发布了新的文献求助10
45秒前
可乐不加冰完成签到,获得积分10
46秒前
46秒前
George完成签到,获得积分10
48秒前
Lucas应助玉玊采纳,获得10
51秒前
桐桐应助含蓄访梦采纳,获得10
52秒前
星月完成签到 ,获得积分10
54秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3384284
求助须知:如何正确求助?哪些是违规求助? 2998332
关于积分的说明 8778282
捐赠科研通 2683909
什么是DOI,文献DOI怎么找? 1469969
科研通“疑难数据库(出版商)”最低求助积分说明 679585
邀请新用户注册赠送积分活动 671926