纸卷
数学
多重性(数学)
算法
神学
几何学
哲学
作者
Vincenzo Ambrosio,Teresa Isernia
标识
DOI:10.1016/j.aml.2019.03.010
摘要
In this note we improve the recent results established in Ambrosio and Isernia (2018) concerning the multiplicity and concentration of positive solutions for the following class of p -fractional Schrödinger equations: ε s p ( − Δ ) p s u + V ( x ) | u | p − 2 u = f ( u ) + γ | u | p s ∗ − 2 u in R N where ε > 0 , s ∈ ( 0 , 1 ) , p ∈ ( 1 , ∞ ) , N > s p , γ ∈ { 0 , 1 } , p s ∗ = N p N − s p is the fractional critical exponent, ( − Δ ) p s is the fractional p -Laplacian operator, V is a continuous positive potential satisfying the Rabinowitz condition (Rabinowitz, 1992), and f is a superlinear continuous function with subcritical growth at infinity. Here we do not assume the well-known Ambrosetti–Rabinowitz condition (Ambrosetti and Rabinowitz, 1973) on f and we complete the study in the critical case γ = 1 .
科研通智能强力驱动
Strongly Powered by AbleSci AI