耐久性
结冰
材料科学
涂层
复合材料
悬挂(拓扑)
气象学
同伦
数学
物理
纯数学
作者
Navid Sharifi,Ali Dolatabadi,Martin Pugh,Christian Moreau
标识
DOI:10.1016/j.coldregions.2018.11.018
摘要
Superhydrophobic coatings are a potential solution for mitigating the in-flight icing problem for aircraft. However, to develop a superhydrophobic coating which can be practically used for aircraft and that possesses sufficient durability is an ongoing challenge. In this work, superhydrophobic coatings are developed using suspension plasma spraying (SPS) as a flexible, versatile and scalable coating technique. The anti-icing and deicing performances of these SPS coatings are studied in icing wind tunnel experiments. Furthermore, the durability of these SPS coatings is tested in dry particle and cloud-sized water droplet erosion and icing/deicing cyclic tests. The capability of SPS superhydrophobic coatings to reduce ice accretion is comparable to that of commercial superhydrophobic coatings but perform better in deicing tests using heating. Additionally, compared to commercial superhydrophobic coatings, the SPS coatings demonstrate significantly better performance in dry particle and icing/deicing cyclic tests while showing comparable durability in cloud-sized water droplet erosion tests. It is also shown that in case of high intensity water erosion, when the superhydrophobicity of SPS coatings deteriorates, it can be restored using a simple and quick retreatment process due to the robustness of the hierarchical micro-textured TiO2 base coatings.
科研通智能强力驱动
Strongly Powered by AbleSci AI