计算机科学
人工智能
模式识别(心理学)
极限学习机
机器学习
Boosting(机器学习)
高光谱成像
分类器(UML)
上下文图像分类
支持向量机
深度学习
域适应
特征提取
学习迁移
集成学习
判别式
人工神经网络
特征(语言学)
卷积神经网络
特征选择
作者
Junshi Xia,Naoto Yokoya,Akira Iwasaki
出处
期刊:International Geoscience and Remote Sensing Symposium
日期:2018-07-01
卷期号:: 3615-3618
被引量:1
标识
DOI:10.1109/igarss.2018.8518654
摘要
Domain adaptation and transfer learning adapt the priori information of source domain to train a classier used to predict the label in the target domain. The parameter and instance transfer methods have shown excellent performance. The former adjusts the parameters of transitional classifiers and the latter re-weights the training sample to the different training set, which is similar to the AdaBoost. To further improve the performance, we proposed to combine the two techniques mentioned above. More specifically, we select the Transfer Boosting and domain adaptation extreme learning machine (DAELM) as the instance and parameter transfer methods, respectively. We refer the proposed method to the boosting for DAELM (BDAELM). We compare the proposed method with DAELM and other methods on the real cross-domain hyperspectral remote sensing images acquired over a Japanese mixed forest, showing improved classification accuracies.
科研通智能强力驱动
Strongly Powered by AbleSci AI