Prediction of Recurrence after Transsphenoidal Surgery for Cushing’s Disease: The Use of Machine Learning Algorithms

医学 接收机工作特性 算法 早晨 经蝶手术 内科学 内分泌学 胃肠病学 数学 腺瘤 垂体腺瘤
作者
Yifan Liu,Xiao-Hai Liu,Xinyu Hong,Penghao Liu,Xinjie Bao,Yong Yao,Bing Xing,LI Yan-sheng,Yi Huang,Huijuan Zhu,Lin Lü,Renzhi Wang,Ming Feng
出处
期刊:Neuroendocrinology [Karger Publishers]
卷期号:108 (3): 201-210 被引量:50
标识
DOI:10.1159/000496753
摘要

<b><i>Background:</i></b> There are no reliable predictive models for recurrence after transsphenoidal surgery (TSS) for Cushing’s disease (CD). <b><i>Objectives:</i></b> This study aimed to develop machine learning (ML)-based predictive models for CD recurrence after initial TSS and to evaluate their performance. <b><i>Method:</i></b> A total of 354 CD patients were included in this retrospective, supervised learning, data mining study. Predictive models for recurrence were developed according to 17 variables using 7 algorithms. Models were evaluated based on the area under the receiver operating characteristic curve (AUC). <b><i>Results:</i></b> All patients were followed up for over 12 months (mean ± SD 43.80 ± 35.61). The recurrence rate was 13.0%. Age (<i>p</i> &#x3c; 0.001), postoperative morning serum cortisol nadir (<i>p</i> = 0.002), and postoperative (<i>p</i> &#x3c; 0.001) and preoperative (<i>p</i> = 0.04) morning adrenocorticotropin (ACTH) level were significantly related to recurrence. AUCs of the 7 models ranged from 0.608 to 0.781. The best performance (AUC = 0.781, 95% CI 0.706, 0.856) appeared when 8 variables were introduced to the random forest (RF) algorithm, which was much better than that of logistic regression (AUC = 0.684, <i>p</i> = 0.008) and that of using only postoperative morning serum cortisol (AUC = 0.635, <i>p</i> &#x3c; 0.001). According to the feature selection algorithms, the top 3 predictors were age, postoperative serum cortisol, and postoperative ACTH. <b><i>Conclusions:</i></b> Using ML-based models for prediction of the recurrence after initial TSS for CD is feasible, and RF performs best. The performance of most of ML-based models was significantly better than that of some conventional models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoguan完成签到,获得积分10
1秒前
Owen应助欣喜的尔曼采纳,获得10
3秒前
独特的翠芙完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
姜惠完成签到 ,获得积分10
6秒前
小脸红扑扑完成签到 ,获得积分10
7秒前
奋斗的凡完成签到 ,获得积分10
7秒前
8秒前
zhutier完成签到,获得积分10
9秒前
wrr完成签到,获得积分10
9秒前
WxChen完成签到,获得积分10
9秒前
开朗艳一完成签到,获得积分10
11秒前
Wonder完成签到,获得积分10
12秒前
yang完成签到,获得积分10
14秒前
123123完成签到 ,获得积分10
15秒前
温暖宛筠完成签到,获得积分10
15秒前
小欣6116完成签到,获得积分10
16秒前
请叫我风吹麦浪应助冬月采纳,获得10
16秒前
LIUYONG发布了新的文献求助10
17秒前
17秒前
肖雪依完成签到,获得积分10
17秒前
影子完成签到,获得积分10
18秒前
19秒前
晨珂完成签到,获得积分10
19秒前
Florencia发布了新的文献求助10
21秒前
xiezhuochun发布了新的文献求助10
22秒前
22秒前
同瓜不同命完成签到,获得积分10
24秒前
牛马哥发布了新的文献求助10
25秒前
温婉的松鼠完成签到,获得积分10
25秒前
26秒前
辛勤的寄瑶完成签到,获得积分10
26秒前
Lauren完成签到 ,获得积分10
27秒前
28秒前
忆枫完成签到,获得积分10
32秒前
炒鸡小将发布了新的文献求助10
32秒前
花壳在逃野猪完成签到 ,获得积分10
32秒前
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029