Exemplar-based depth inpainting with arbitrary-shape patches and cross-modal matching

修补 深度图 人工智能 匹配(统计) 计算机科学 相似性(几何) 情态动词 计算机视觉 RGB颜色模型 边界(拓扑) 失真(音乐) 纹理合成 纹理(宇宙学) 模式识别(心理学) 数学 图像(数学) 图像纹理 图像分割 数学分析 统计 化学 高分子化学 放大器 带宽(计算) 计算机网络
作者
Sen Xiang,Deng Hu,Lei Zhu,Jin Wu,Li Yu
出处
期刊:Signal Processing-image Communication [Elsevier]
卷期号:71: 56-65 被引量:11
标识
DOI:10.1016/j.image.2018.07.005
摘要

Commodity RGB-D cameras can provide texture and depth maps in real-time, and thus have facilitated the booming development of various depth-dependent applications. However, depth maps suffer from the loss of valid values, which leads to holes and impairs both research and applications. In this paper, we propose a novel exemplar based method to fill depth holes and thus to improve depth quality. This novel method is based on the fact that a depth map has many similar even identical parts, and the lost depth values can be restored by referring to valid ones. Considering the intrinsic property of depth maps, i.e., the sharpness of object boundaries, we propose to use arbitrary-shape matching patches, instead of fixed squares, to avoid inter-depth-layer distortion and thus improve the boundary. In addition, since depth values do not have distinct features, cross-modal matching, where both depth and texture are involved, is utilized. Moreover, we also investigate the similarity criteria in cross-modal matching, in order to improve the accuracy between the source patch and the target patch. Experimental results demonstrate that the proposed method can accurately recover lost depth information, especially at boundaries, which outperforms state-of-the-art exemplar-based inpainting methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Takagi完成签到,获得积分10
1秒前
2010完成签到,获得积分10
1秒前
2秒前
王一发布了新的文献求助30
2秒前
2秒前
2秒前
尼古拉斯完成签到,获得积分10
2秒前
摆烂ing完成签到,获得积分10
3秒前
3秒前
4秒前
冷酷的松思完成签到,获得积分10
4秒前
糕糕完成签到 ,获得积分10
4秒前
龙龍泷发布了新的文献求助10
4秒前
汤哈哈哈哈完成签到,获得积分10
5秒前
霸气咖啡豆完成签到,获得积分10
6秒前
6秒前
97完成签到,获得积分10
6秒前
seankang发布了新的文献求助10
7秒前
7秒前
NexusExplorer应助英勇的绮烟采纳,获得10
7秒前
7秒前
呆萌的xue完成签到,获得积分10
8秒前
killer完成签到,获得积分10
8秒前
田様应助噜啦啦采纳,获得10
8秒前
8秒前
ruirui_love发布了新的文献求助10
8秒前
舒适静丹完成签到,获得积分10
8秒前
Wcy发布了新的文献求助10
9秒前
ljx发布了新的文献求助10
9秒前
nail发布了新的文献求助10
9秒前
赘婿应助flylmy2008采纳,获得10
9秒前
NexusExplorer应助朝伟呵采纳,获得30
9秒前
9秒前
慕青应助怡然平萱采纳,获得10
10秒前
11秒前
堇妗完成签到,获得积分10
11秒前
爱撒娇的飞烟完成签到 ,获得积分10
13秒前
四氟乙烯完成签到,获得积分10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525344
求助须知:如何正确求助?哪些是违规求助? 4615587
关于积分的说明 14549232
捐赠科研通 4553605
什么是DOI,文献DOI怎么找? 2495428
邀请新用户注册赠送积分活动 1475975
关于科研通互助平台的介绍 1447716