Exemplar-based depth inpainting with arbitrary-shape patches and cross-modal matching

修补 深度图 人工智能 匹配(统计) 计算机科学 相似性(几何) 情态动词 计算机视觉 RGB颜色模型 边界(拓扑) 失真(音乐) 纹理合成 纹理(宇宙学) 模式识别(心理学) 数学 图像(数学) 图像纹理 图像分割 数学分析 统计 化学 高分子化学 放大器 带宽(计算) 计算机网络
作者
Sen Xiang,Deng Hu,Lei Zhu,Jin Wu,Li Yu
出处
期刊:Signal Processing-image Communication [Elsevier]
卷期号:71: 56-65 被引量:11
标识
DOI:10.1016/j.image.2018.07.005
摘要

Commodity RGB-D cameras can provide texture and depth maps in real-time, and thus have facilitated the booming development of various depth-dependent applications. However, depth maps suffer from the loss of valid values, which leads to holes and impairs both research and applications. In this paper, we propose a novel exemplar based method to fill depth holes and thus to improve depth quality. This novel method is based on the fact that a depth map has many similar even identical parts, and the lost depth values can be restored by referring to valid ones. Considering the intrinsic property of depth maps, i.e., the sharpness of object boundaries, we propose to use arbitrary-shape matching patches, instead of fixed squares, to avoid inter-depth-layer distortion and thus improve the boundary. In addition, since depth values do not have distinct features, cross-modal matching, where both depth and texture are involved, is utilized. Moreover, we also investigate the similarity criteria in cross-modal matching, in order to improve the accuracy between the source patch and the target patch. Experimental results demonstrate that the proposed method can accurately recover lost depth information, especially at boundaries, which outperforms state-of-the-art exemplar-based inpainting methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
小伊001完成签到,获得积分10
1秒前
儒雅静柏完成签到,获得积分10
3秒前
Chengzhu7发布了新的文献求助10
4秒前
4秒前
顾矜应助小徐采纳,获得10
4秒前
Limulu发布了新的文献求助30
4秒前
Hin66发布了新的文献求助10
6秒前
侯总应助南笛采纳,获得10
6秒前
Protein完成签到,获得积分10
6秒前
充电宝应助千禧龙采纳,获得10
6秒前
Junanne完成签到,获得积分10
7秒前
Susu完成签到,获得积分10
7秒前
9秒前
nn发布了新的文献求助10
9秒前
wsmmmmm发布了新的文献求助10
9秒前
欣欣完成签到,获得积分10
10秒前
11秒前
库库里里大完成签到,获得积分10
11秒前
追光者发布了新的文献求助10
12秒前
沉默的倔驴应助lhOAQ采纳,获得10
13秒前
南也关注了科研通微信公众号
13秒前
懒癌晚期完成签到,获得积分10
14秒前
14秒前
Hin66完成签到,获得积分20
15秒前
15秒前
15秒前
orixero应助hmj采纳,获得10
16秒前
能干的邹发布了新的文献求助10
17秒前
18秒前
何意味完成签到 ,获得积分10
19秒前
水木年华发布了新的文献求助10
19秒前
21秒前
21秒前
彭于晏应助欣喜的尔曼采纳,获得10
21秒前
22秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300