Highly sensitive 3C-SiC on glass based thermal flow sensor realized using MEMS technology

材料科学 碳化硅 灵敏度(控制系统) 微电子机械系统 电阻式触摸屏 温度系数 制作 基质(水族馆) 光电子学 流量传感器 流量(数学) 热的 体积流量 温度测量 电气工程 复合材料 电子工程 声学 工程类 几何学 替代医学 气象学 病理 地质学 物理 海洋学 医学 量子力学 数学
作者
V.R. Balakrishnan,Toan Dinh,Hoang‐Phuong Phan,Dzung Viet Dao,Nam‐Trung Nguyen
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:279: 293-305 被引量:41
标识
DOI:10.1016/j.sna.2018.06.025
摘要

This paper presents a silicon carbide (SiC) based thermal flow sensor on a transparent and electrically insulating glass substrate via anodic bonding process. The paper elaborates on the fabrication steps of the thermal flow sensor. Three resistive heater size configurations of dimensions 100 μm × 100 μm, 300 μm × 300 μm, and 1000 μm × 1000 μm were fabricated. The thermoresistive properties of 3C-SiC on glass were investigated from ambient temperature to 443 K. The characterization of the SiC heater and temperature sensors revealed a high thermoresistive effect with a temperature coefficient of resistance (TCR) of approximately −20,716 ppm/K at ambient temperature(298 K) and −9367 ppm/K at 443 K respectively. The performance of the sensors was evaluated based on the sensitivity of the flow sensor. For a turbulent flow velocity of 7.4 m/s, the sensitivity of the sensor operating in the constant -voltage mode is 0.091 s/m with a power consumption of 133.50 mW for the 1000 μm × 1000 μm heater. Finally, a study on the flow direction was conducted to confirm the operation of 2-D direction independent hot-film flow sensor. Results indicated that the performance of the sensor remained the same when the flow direction was perpendicular to SiC heater and sensor respectively. However, the best sensitivity was achieved by passing air flow perpendicular to the sensing elements. The high TCR of the single crystalline 3C-SiC material, the relatively low power consumption on the order of milliwatts and the high sensitivity of our sensor demonstrates its potential use for high temperature flow sensing applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助Accpted河豚采纳,获得10
刚刚
刚刚
科研通AI6.1应助michael采纳,获得10
刚刚
Hui发布了新的文献求助10
1秒前
Dai完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
SHAO发布了新的文献求助10
1秒前
2秒前
蜜儿完成签到,获得积分10
2秒前
诺奇发布了新的文献求助10
2秒前
alee完成签到,获得积分10
2秒前
3秒前
小李发布了新的文献求助10
3秒前
科研通AI6.1应助saefduo采纳,获得10
3秒前
GY916发布了新的文献求助10
3秒前
fuiee发布了新的文献求助10
3秒前
qy发布了新的文献求助10
3秒前
4秒前
mindseye发布了新的文献求助10
4秒前
文艺稚晴发布了新的文献求助10
4秒前
小李的李发布了新的文献求助30
5秒前
nn发布了新的文献求助10
5秒前
5秒前
5秒前
招水若离完成签到,获得积分0
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759349
求助须知:如何正确求助?哪些是违规求助? 5519823
关于积分的说明 15393808
捐赠科研通 4896421
什么是DOI,文献DOI怎么找? 2633690
邀请新用户注册赠送积分活动 1581712
关于科研通互助平台的介绍 1537250