塔菲尔方程
过电位
析氧
材料科学
催化作用
化学工程
纳米颗粒
双功能
纳米技术
碳纤维
化学
电催化剂
电极
电化学
有机化学
复合材料
物理化学
复合数
工程类
作者
Danni Ding,Kui Shen,Xiao Chen,Huirong Chen,Junying Chen,Ting Fan,Rongfang Wu,Yingwei Li
标识
DOI:10.1021/acscatal.8b02504
摘要
Emerging clean energy technologies such as regenerative fuel cells and rechargeable metal–air batteries have attracted increasing global interest because of their high efficiency and environmental benignity, but the lack of highly active bifunctional electrocatalysts at low cost for both oxygen reduction and evolution reactions (ORR and OER) greatly hinders their commercial applications. Here, we report the multilevel architecture optimization of Co-based nanoparticles (NPs) embedded in hollow N-doped carbon polyhedra for boosting the ORR and OER, which are fabricated by a two-step pyrolysis–oxidation strategy with a Co-based MOF (ZIF-67) as precursor. The key for this strategy lies in the precise and effective control of the oxidation processes of Co NPs, which enables the synthesis of a series of Co–Co3O4-based nanoarchitectures that are embedded in hollow nitrogen-doped carbon polyhedra (HNCP), including core–shell Co/Co3O4, yolk@shell Co@Co3O4, and hollow Co3O4 NPs. Benefiting from its abundant oxygen vacancies and tetrahedral Co2+ and the potential synergies of CoOx species and nitrogen-doped carbon as well as the efficient mass transfer of hollow and yolk–shell structures, the optimal yolk@shell Co3O4/HNCP-40 exhibits high activity for the OER with a low overpotential of 333 mV at 10 mA cm–2 and a small Tafel slope of 69 mV dec–1, which is better than those of commercial IrO2 (its overpotential and Tafel slope are 409 mV at 10 mA cm–2 and 104 mV dec–1, respectively). Meanwhile, the catalyst also exhibits comparable ORR catalytic activity with a half-wave potential of 0.834 V but better stability and methanol tolerance relative to commercial Pt/C (20 wt %), making it a potential bifunctional electrocatalyst for both the OER and ORR. This MOF-templated strategy for multilevel nanostructures provides insights into the development of highly efficient and low-cost bifunctional electrocatalysts for the OER/ORR.
科研通智能强力驱动
Strongly Powered by AbleSci AI