亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ESFNet: Efficient Network for Building Extraction From High-Resolution Aerial Images

计算机科学 内存占用 足迹 背景(考古学) 失败 残余物 块(置换群论) 任务(项目管理) 深度学习 人工智能 推论 编码(集合论) 实时计算 计算机工程 数据挖掘 并行计算 算法 几何学 数学 程序设计语言 管理 集合(抽象数据类型) 经济 古生物学 生物 操作系统
作者
Jingbo Lin,Weipeng Jing,Houbing Song,Guangsheng Chen
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 54285-54294 被引量:56
标识
DOI:10.1109/access.2019.2912822
摘要

Building footprint extraction from high-resolution aerial images is always an essential part of urban dynamic monitoring, planning, and management. It has also been a challenging task in remote sensing research. In recent years, deep neural networks have made great achievement in improving the accuracy of building extraction from remote sensing imagery. However, most of the existing approaches usually require a large amount of parameters and floating point operations for high accuracy, it leads to high memory consumption and low inference speed which are harmful to research. In this paper, we proposed a novel efficient network named ESFNet which employs separable factorized residual block and utilizes the dilated convolutions, aiming to preserve slight accuracy loss with low computational cost and memory consumption. Our ESFNet obtains a better trade-off between accuracy and efficiency, it can run at over 100 FPS on single Tesla V100, requires 6x fewer FLOPs and has 18x fewer parameters than state-of-the-art real-time architecture ERFNet while preserving similar accuracy without any additional context module, post-processing and pre-trained scheme. We evaluated our networks on WHU building dataset and compared it with other state-of-the-art architectures. The result and comprehensive analysis show that our networks are benefit for efficient remote sensing researches, and the idea can be further extended to other areas. The code is publicly available at: https://github.com/mrluin/ESFNet-Pytorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
归尘发布了新的文献求助30
6秒前
bellapp完成签到 ,获得积分10
21秒前
yznfly应助归尘采纳,获得20
23秒前
酷波er应助归尘采纳,获得10
23秒前
华仔应助归尘采纳,获得100
23秒前
CipherSage应助归尘采纳,获得10
23秒前
yydragen应助归尘采纳,获得30
28秒前
今后应助归尘采纳,获得10
28秒前
李爱国应助归尘采纳,获得10
28秒前
CodeCraft应助归尘采纳,获得10
28秒前
禾安应助归尘采纳,获得20
28秒前
完美世界应助归尘采纳,获得10
29秒前
Lucas应助归尘采纳,获得30
29秒前
汉堡包应助归尘采纳,获得10
29秒前
NexusExplorer应助归尘采纳,获得10
29秒前
英俊的铭应助归尘采纳,获得10
29秒前
Rondab应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
FashionBoy应助科研通管家采纳,获得10
30秒前
Rondab应助科研通管家采纳,获得10
30秒前
Rondab应助科研通管家采纳,获得10
30秒前
YifanWang应助科研通管家采纳,获得10
30秒前
YifanWang应助科研通管家采纳,获得10
30秒前
cc应助科研通管家采纳,获得10
30秒前
酷波er应助科研通管家采纳,获得10
30秒前
Rondab应助科研通管家采纳,获得10
30秒前
YifanWang应助科研通管家采纳,获得20
30秒前
Sandy应助科研通管家采纳,获得80
30秒前
传奇3应助科研通管家采纳,获得10
30秒前
半城微凉关注了科研通微信公众号
34秒前
FanFan应助归尘采纳,获得30
35秒前
情怀应助归尘采纳,获得10
35秒前
yar应助归尘采纳,获得10
35秒前
科研通AI2S应助归尘采纳,获得10
35秒前
英俊的铭应助归尘采纳,获得10
35秒前
星辰大海应助归尘采纳,获得10
35秒前
传奇3应助归尘采纳,获得30
36秒前
光影相生应助归尘采纳,获得10
36秒前
无花果应助归尘采纳,获得10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960053
求助须知:如何正确求助?哪些是违规求助? 3506261
关于积分的说明 11128558
捐赠科研通 3238254
什么是DOI,文献DOI怎么找? 1789617
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056