苝
二亚胺
钙钛矿(结构)
材料科学
能量转换效率
富勒烯
电子传输链
活动层
光电子学
电子
纳米技术
图层(电子)
化学
分子
有机化学
物理
生物化学
薄膜晶体管
量子力学
作者
Zhenghui Luo,Fei Wu,Teng Zhang,Xuan Zeng,Yiqun Xiao,Tao Liu,Cheng Zhong,Xinhui Lu,Linna Zhu,Shihe Yang,Chuluo Yang
标识
DOI:10.1002/anie.201904195
摘要
Electron transport materials (ETM) play an important role in the improvement of efficiency and stability for inverted perovskite solar cells (PSCs). This work reports an efficient ETM, named PDI-C60 , by the combination of perylene diimide (PDI) and fullerene. Compared to the traditional PCBM, this strategy endows PDI-C60 with slightly shallower energy level and higher electron mobility. As a result, the device based on PDI-C60 as electron transport layer (ETL) achieves high power conversion efficiency (PCE) of 18.6 %, which is significantly higher than those of the control devices of PCBM (16.6 %) and PDI (13.8 %). The high PCE of the PDI-C60 -based device can be attributed to the more matching energy level with the perovskite, more efficient charge extraction, transport, and reduced recombination rate. To the best of our knowledge, the PCE of 18.6 % is the highest value in the PSCs using PDI derivatives as ETLs. Moreover, the device with PDI-C60 as ETL exhibits better device stability due to the stronger hydrophobic properties of PDI-C60 . The strategy using the PDI/fullerene hybrid provides insights for future molecular design of the efficient ETM for the inverted PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI