How can Big Data and machine learning benefit environment and water management: a survey of methods, applications, and future directions

大数据 计算机科学 数据科学 工作流程 多样性(控制论) 分析 预测分析 数据管理 体积热力学 人工智能 机器学习 数据挖掘 数据库 量子力学 物理
作者
Alexander Y. Sun,Bridget R. Scanlon
出处
期刊:Environmental Research Letters [IOP Publishing]
卷期号:14 (7): 073001-073001 被引量:391
标识
DOI:10.1088/1748-9326/ab1b7d
摘要

Abstract Big Data and machine learning (ML) technologies have the potential to impact many facets of environment and water management (EWM). Big Data are information assets characterized by high volume, velocity, variety, and veracity. Fast advances in high-resolution remote sensing techniques, smart information and communication technologies, and social media have contributed to the proliferation of Big Data in many EWM fields, such as weather forecasting, disaster management, smart water and energy management systems, and remote sensing. Big Data brings about new opportunities for data-driven discovery in EWM, but it also requires new forms of information processing, storage, retrieval, as well as analytics. ML, a subdomain of artificial intelligence (AI), refers broadly to computer algorithms that can automatically learn from data. ML may help unlock the power of Big Data if properly integrated with data analytics. Recent breakthroughs in AI and computing infrastructure have led to the fast development of powerful deep learning (DL) algorithms that can extract hierarchical features from data, with better predictive performance and less human intervention. Collectively Big Data and ML techniques have shown great potential for data-driven decision making, scientific discovery, and process optimization. These technological advances may greatly benefit EWM, especially because (1) many EWM applications (e.g. early flood warning) require the capability to extract useful information from a large amount of data in autonomous manner and in real time, (2) EWM researches have become highly multidisciplinary, and handling the ever increasing data volume/types using the traditional workflow is simply not an option, and last but not least, (3) the current theoretical knowledge about many EWM processes is still incomplete, but which may now be complemented through data-driven discovery. A large number of applications on Big Data and ML have already appeared in the EWM literature in recent years. The purposes of this survey are to (1) examine the potential and benefits of data-driven research in EWM, (2) give a synopsis of key concepts and approaches in Big Data and ML, (3) provide a systematic review of current applications, and finally (4) discuss major issues and challenges, and recommend future research directions. EWM includes a broad range of research topics. Instead of attempting to survey each individual area, this review focuses on areas of nexus in EWM, with an emphasis on elucidating the potential benefits of increased data availability and predictive analytics to improving the EWM research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
矢思然发布了新的文献求助10
1秒前
共享精神应助backback采纳,获得10
1秒前
小马甲应助……采纳,获得10
2秒前
满意的涵菱完成签到,获得积分10
2秒前
哎呀呀发布了新的文献求助10
2秒前
标致小翠发布了新的文献求助10
3秒前
追佩奇十条街完成签到,获得积分10
3秒前
mmm发布了新的文献求助10
3秒前
ysy完成签到,获得积分10
3秒前
3秒前
zuofighting完成签到,获得积分10
5秒前
精明的海露应助自信凤凰采纳,获得50
5秒前
ina完成签到,获得积分10
5秒前
栗子呢呢呢完成签到 ,获得积分10
6秒前
充电宝应助绘图功能采纳,获得10
6秒前
6秒前
洁净艳一完成签到,获得积分10
7秒前
科研通AI5应助hiipaige采纳,获得10
7秒前
lili发布了新的文献求助10
8秒前
Xiaohu完成签到,获得积分10
10秒前
Cactus应助zuofighting采纳,获得10
10秒前
Timezzz完成签到,获得积分10
10秒前
10秒前
精明的海露应助mirror采纳,获得10
11秒前
mmol发布了新的文献求助10
11秒前
尧九应助无情修杰采纳,获得10
12秒前
13秒前
14秒前
大个应助LL采纳,获得10
14秒前
dudu发布了新的文献求助10
15秒前
夏大雨完成签到,获得积分10
15秒前
落寞丹烟完成签到 ,获得积分10
16秒前
球球实验出成果完成签到 ,获得积分20
16秒前
FCH2023完成签到,获得积分10
16秒前
小姑子完成签到,获得积分10
16秒前
中午饭完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
林梓峰完成签到,获得积分10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835