Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation

双酚A 纳米颗粒 高岭石 催化作用 浸出(土壤学) 激进的 化学 X射线光电子能谱 无机化学 傅里叶变换红外光谱 化学工程 核化学 矿物学 有机化学 环氧树脂 工程类 环境科学 土壤科学 土壤水分
作者
Xiongbo Dong,Bangxing Ren,Zhiming Sun,Chunquan Li,Xiangwei Zhang,Minghao Kong,Shuilin Zheng,Dionysios D. Dionysiou
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:253: 206-217 被引量:477
标识
DOI:10.1016/j.apcatb.2019.04.052
摘要

In this study, CuFe2O4/kaolinite catalysts were fabricated through a facile citrate combustion method and were evaluated for their efficiency to activate peroxymonosulfate (PMS) towards the destruction of bisphenol A (BPA). The prepared catalysts were systematically characterized to explore the relationship between their characteristics and catalytic activities. In general, higher specific surface area, larger pore volume, more hydroxyl groups, and more accessible reactive sites of 40%-CuFe2O4/kaolinite contributed to the greater catalytic activity in peroxymonosulfate activation for BPA degradation compared to bare CuFe2O4. Monodispersed CuFe2O4 nanoparticles were uniformly anchored on the surface of kaolinite with FeOAl bond, which prevented leaching of metal ions and contributed to the excellent reusability. The sulfate radicals produced in the CuFe2O4/kaolinite/PMS system were proved as the predominant radical species through electron spin resonance (ESR) and radical quenching experiments. Based on the results of X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance – Fourier transform infrared spectra (ATR-FTIR), two main possible pathways of sulfate radicals generation were proposed: the generation and decomposition of Cu(II)-(HO)OSO3− (Cu(II)/Cu(III) and Cu(III)/Cu(II) redox reaction) and the oxidation of Fe(II). Moreover, the BPA degradation pathway was proposed through the identification of transformation products. This work provides an interesting insight for PMS activation by the high-efficient natural mineral-based catalysts for wastewater reclamation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
孙方宇完成签到,获得积分10
1秒前
1秒前
2秒前
欣喜哈密瓜完成签到 ,获得积分10
2秒前
BaoCure完成签到,获得积分10
2秒前
2秒前
ANCY完成签到,获得积分10
4秒前
Orange应助ning采纳,获得10
4秒前
4秒前
飞飞发布了新的文献求助10
4秒前
5秒前
Battery-Li完成签到,获得积分10
5秒前
IN完成签到,获得积分10
5秒前
Hao发布了新的文献求助10
5秒前
科目三应助zhhyi1976采纳,获得10
5秒前
HOAN应助常泽洋122采纳,获得20
6秒前
6秒前
6秒前
Zinia应助www采纳,获得10
6秒前
wsuser发布了新的文献求助10
7秒前
zzkkl发布了新的文献求助10
7秒前
lkx完成签到 ,获得积分10
7秒前
IN发布了新的文献求助30
8秒前
科研通AI2S应助难过的蜜粉采纳,获得10
9秒前
平凡之路发布了新的文献求助10
9秒前
9秒前
诺奇完成签到,获得积分10
9秒前
Hello应助Sew东坡采纳,获得10
9秒前
波西米亚完成签到,获得积分10
9秒前
赘婿应助ANCY采纳,获得30
9秒前
是但求其爱完成签到,获得积分10
10秒前
猫咪完成签到,获得积分10
10秒前
00928完成签到,获得积分10
11秒前
谦谦完成签到,获得积分10
11秒前
英姑应助QiQi采纳,获得10
11秒前
热情嘉懿发布了新的文献求助10
11秒前
小飞侠来咯完成签到,获得积分10
12秒前
hyn完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660897
求助须知:如何正确求助?哪些是违规求助? 4836059
关于积分的说明 15092345
捐赠科研通 4819501
什么是DOI,文献DOI怎么找? 2579320
邀请新用户注册赠送积分活动 1533794
关于科研通互助平台的介绍 1492586