A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance

材料科学 自行车 阴极 硫黄 氧化物 氧气 分压 锂(药物) 金属 离子 过渡金属 化学工程 冶金 物理化学 催化作用 生物化学 考古 内分泌学 量子力学 有机化学 物理 医学 历史 工程类 化学
作者
Zhenhe Sun,Lingqun Xu,C. Dong,Hongtao Zhang,Mingtao Zhang,Yanfeng Ma,Yiyang Liu,Zhongjun Li,Ying Zhou,Han Yu,Yongsheng Chen
出处
期刊:Nano Energy [Elsevier]
卷期号:63: 103887-103887 被引量:122
标识
DOI:10.1016/j.nanoen.2019.103887
摘要

Abstract Lithium-rich and Ni-rich cathode materials have been considered as the attractive candidate for their high capacitive performance, but usually exhibit poor rate performance and limited cycle life. Herein, a facile gaseous sulfur treatment was developed to uniformly create oxygen vacancies and replace oxygen with sulfur atoms at the surface region of lithium-rich and Ni-rich cathode materials. Such a treatment, when applied to typical Li- or Ni- rich materials such as Li1.2Ni0.13Co0.13Mn0.54O2 (LNCMO), Li1.2Ni0.2Mn0.6O2 (LNMO) and LiNi0.8Co0.1Mn0.1O2 (NCM811), could enhance significantly all their cycle and rate performance. For example, LNCMO@S obtained from LNCMO, could exhibit a capacity retention of 81.10% after 600 cycles at 0.5 C (compared with 65.78% of LNCMO after 200 cycles), together with an excellent rate performance of 174.8 mA h g−1 at 10 C (compared with 133.3 mA h g−1 of LNCMO), which is among the best performance for all Li-rich cathode materials. The revealed mechanism, where the partial replacement of O by S at the lattice surface significantly reduces oxygen partial pressure and also enhances the Li ion conductivity, might shed light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for Li-ion batteries with high energy and power density.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萄哥布鸽发布了新的文献求助10
1秒前
JosephCobb发布了新的文献求助10
1秒前
18183389686发布了新的文献求助10
2秒前
2秒前
多巴不胺发布了新的文献求助10
2秒前
852应助爱笑以松采纳,获得10
2秒前
Patrick发布了新的文献求助10
3秒前
我真找不到应助影1采纳,获得50
3秒前
赘婿应助鳗鱼山河采纳,获得10
4秒前
4秒前
SciGPT应助旋光活性采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
聪慧冰淇淋完成签到 ,获得积分10
5秒前
6秒前
6秒前
英俊的铭应助TTRRCEB采纳,获得10
6秒前
7秒前
xyg发布了新的文献求助10
7秒前
CipherSage应助木子采纳,获得10
7秒前
声声发布了新的文献求助10
7秒前
动听曼卉完成签到 ,获得积分10
7秒前
汉堡包应助值得采纳,获得10
8秒前
狂野的凝莲关注了科研通微信公众号
9秒前
小马甲应助爱吃米线采纳,获得10
9秒前
爆米花应助Pluto采纳,获得30
10秒前
aliensinger发布了新的文献求助10
10秒前
JosephCobb完成签到,获得积分10
11秒前
wwwwyx完成签到,获得积分10
11秒前
哈哈发布了新的文献求助10
11秒前
12秒前
tata1945发布了新的文献求助10
12秒前
Sarina发布了新的文献求助10
12秒前
13秒前
所所应助内向宝马采纳,获得10
13秒前
14秒前
加油加油研究研究完成签到 ,获得积分10
14秒前
orixero应助王王碎冰冰采纳,获得10
14秒前
英俊中心完成签到 ,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663524
求助须知:如何正确求助?哪些是违规求助? 4850541
关于积分的说明 15104701
捐赠科研通 4821750
什么是DOI,文献DOI怎么找? 2580972
邀请新用户注册赠送积分活动 1535170
关于科研通互助平台的介绍 1493501