Porous versus Compact Hematite Nanorod Photoanode for High-Performance Photoelectrochemical Water Oxidation

赤铁矿 纳米棒 光电流 材料科学 化学工程 氧化锡 纳米结构 分解水 纳米技术 光催化 氧化物 化学 催化作用 光电子学 工程类 冶金 生物化学
作者
Guang Liu,Na Li,Yong Zhao,Muheng Wang,Rui Yao,Fei Zhao,Yun Wu,Jinping Li
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:7 (13): 11377-11385 被引量:33
标识
DOI:10.1021/acssuschemeng.9b01045
摘要

Hematite (α-Fe2O3) is an attractive photoanode material for photoelectrochemical (PEC) water oxidation due to its high chemical stability, earth abundance, and suitable bandgap. However, the practical application of hematite in PEC water oxidation is severely limited by its short diffusion length of holes and high charge recombination rate. This work describes the synthesis of porous hematite nanorod (Fe2O3–PN) photoanodes via a facile surfactant-assisted hydrothermal method. With dicyandiamide-formaldehyde (DF) resin as a surfactant, uniform hematite nanoarrays with a porous nanostructure are successfully grown on the surface of FTO (F-doped tin oxide) glass and exhibit enhanced charge separation for improved PEC water oxidation with comparison to that of compact hematite nanorods (Fe2O3–CNs). Photoelectrochemical impedance spectroscopy (PEIS) and PEC analysis reveal that the porous nanostructure is crucial to promote the photogenerated charge separation in the bulk and also accelerate the charge separation on the surface by providing enlarged electrochemical surface area. A boosted photocurrent density of 1.06 mA/cm2 for Fe2O3–PN photoanodes is delivered at 1.23 V vs RHE under AM 1.5G illumination in 0.1 M KOH solution, which is 2-fold of that of Fe2O3–CN photoanodes. Furthermore, the PEC water oxidation kinetics of Fe2O3–PN photoanodes is further enhanced by incorporation of a cobalt phosphate (CoPi) cocatalyst, attaining a photocurrent density of 1.6 mA/cm2 at 1.23 V vs RHE. This study provides an effective pathway for rationally synthesizing a highly active hematite photoanode for efficient PEC water oxidation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私秋珊应助西门百招采纳,获得10
刚刚
沧海一兰完成签到,获得积分10
1秒前
浮游应助橘子采纳,获得10
1秒前
猫猫爱吃煎饼完成签到 ,获得积分10
1秒前
Orange应助咕噜咕噜采纳,获得10
2秒前
4秒前
rk发布了新的文献求助12
4秒前
5秒前
杨金城完成签到,获得积分10
5秒前
田园完成签到,获得积分10
5秒前
小蘑菇应助无限小松鼠采纳,获得10
5秒前
科研通AI6应助万慧采纳,获得100
6秒前
7秒前
狗尾巴草发布了新的文献求助10
8秒前
金毛上将完成签到,获得积分10
8秒前
9秒前
谷谷完成签到,获得积分20
9秒前
10秒前
10秒前
10秒前
充电宝应助Leah采纳,获得10
10秒前
爱吃姜的面条完成签到,获得积分10
11秒前
domingo发布了新的文献求助30
11秒前
沉默的靖儿完成签到 ,获得积分10
12秒前
wanci应助快乐小狗采纳,获得10
13秒前
卡卡光波完成签到,获得积分10
13秒前
虚心的老头完成签到,获得积分10
13秒前
Ava应助Orange采纳,获得10
13秒前
玄音完成签到,获得积分10
14秒前
zzw完成签到,获得积分10
15秒前
15秒前
17秒前
18秒前
18秒前
18秒前
18秒前
Akim应助bhappy21采纳,获得10
20秒前
妮妮完成签到,获得积分10
21秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192038
求助须知:如何正确求助?哪些是违规求助? 4375147
关于积分的说明 13623731
捐赠科研通 4229284
什么是DOI,文献DOI怎么找? 2319783
邀请新用户注册赠送积分活动 1318375
关于科研通互助平台的介绍 1268503