Identifying and differentiating melancholic depression in a non-clinical sample

忧郁症 忧郁症 非典型忧郁症 心理学 萧条(经济学) 潜在类模型 无血性 重性抑郁障碍 抑郁症状 临床心理学 精神科 精神分裂症(面向对象编程) 认知 经济 宏观经济学 统计 数学
作者
Gordon Parker,Gabriela Tavella,Dušan Hadži-Pavlović
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:243: 194-200 被引量:8
标识
DOI:10.1016/j.jad.2018.09.024
摘要

Differentiating melancholic and non-melancholic depressive disorders and evaluating whether they differ categorically or dimensionally has had a lengthy history, but has not previously been evaluated in a non-clinical adolescent sample.We studied a sample of 1579 senior high school students and evaluated the capacity of the Sydney Melancholia Prototype Index (SMPI) to differentiate melancholic from non-melancholic depression, both using a 'top down' strategy of imposing a pre-established cut-off score and a 'bottom up' strategy of employing latent class analyses.The two strategies respectively generated prevalence figures of 3.4% and 8.1% of the students having experienced a melancholic depressive episode and with the difference reflecting the LCA assigning some students who did not reach the pre-established cut-off score for the SMPI in the putative melancholic class. The principal latent class analysis failed to generate pristine melancholic and non-melancholic depressive classes, in that it also generated an 'intermediate' as well as a non-clinical depressive class. Both SMPI strategies identified similar symptoms-such as anhedonia and anergia-and several illness correlates that best differentiated those assigned melancholia status, and both strategies confirmed melancholia assignment being associated with factors indicative of more severe depressive disorders and of likely melancholic depression.Data were assessed by self-report only, only lifetime depression was assessed, and no other depressive diagnostic validating measure was administered.The SMPI appears capable of identifying and differentiating melancholic from non-melancholic depression in a non-clinical adolescent sample.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI5应助yx采纳,获得10
刚刚
1秒前
hym完成签到,获得积分10
1秒前
马静雨关注了科研通微信公众号
1秒前
111222完成签到,获得积分20
1秒前
2秒前
2秒前
三卡车安排你完成签到,获得积分10
3秒前
请叫我风吹麦浪应助Seiswan采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
曾经以亦完成签到,获得积分10
5秒前
所所应助发疯的游子采纳,获得10
5秒前
6秒前
jcm发布了新的文献求助10
7秒前
辛勤的初晴完成签到,获得积分20
7秒前
Scidog发布了新的文献求助10
7秒前
单于静柏完成签到,获得积分10
8秒前
校长发布了新的文献求助10
8秒前
9秒前
御觞丶完成签到,获得积分10
9秒前
今后应助zhui采纳,获得10
10秒前
10秒前
SciGPT应助雾蓝采纳,获得10
10秒前
lulu828完成签到,获得积分10
11秒前
11秒前
科研闲人完成签到,获得积分10
12秒前
内向秋寒发布了新的文献求助10
12秒前
12秒前
黑色兔子完成签到 ,获得积分10
12秒前
13秒前
四小时充足睡眠完成签到,获得积分10
14秒前
zhang0403完成签到,获得积分10
14秒前
欢喜的毛豆完成签到 ,获得积分10
15秒前
华仔应助Eddy采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794