Deep Affinity Network for Multiple Object Tracking

计算机科学 人工智能 视频跟踪 计算机视觉 深度学习 目标检测 帧(网络) 标杆管理 联想(心理学) 对象(语法) 模式识别(心理学) 跟踪(教育) 利用 哲学 营销 业务 心理学 认识论 电信 计算机安全 教育学
作者
Shijie Sun,Naveed Akhtar,Huansheng Song,Ajmal Mian,Mubarak Shah
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:143
标识
DOI:10.1109/tpami.2019.2929520
摘要

Multiple Object Tracking (MOT) plays an important role in solving many fundamental problems in video analysis and computer vision. Most MOT methods employ two steps: Object Detection and Data Association. The first step detects objects of interest in every frame of a video, and the second establishes correspondence between the detected objects in different frames to obtain their tracks. Object detection has made tremendous progress in the last few years due to deep learning. However, data association for tracking still relies on hand crafted constraints such as appearance, motion, spatial proximity, grouping etc. to compute affinities between the objects in different frames. In this paper, we harness the power of deep learning for data association in tracking by jointly modeling object appearances and their affinities between different frames in an end-to-end fashion. The proposed Deep Affinity Network (DAN) learns compact, yet comprehensive features of pre-detected objects at several levels of abstraction, and performs exhaustive pairing permutations of those features in any two frames to infer object affinities. DAN also accounts for multiple objects appearing and disappearing between video frames. We exploit the resulting efficient affinity computations to associate objects in the current frame deep into the previous frames for reliable on-line tracking. Our technique is evaluated on popular multiple object tracking challenges MOT15, MOT17 and UA-DETRAC. Comprehensive benchmarking under twelve evaluation metrics demonstrates that our approach is among the best performing techniques on the leader board for these challenges. The open source implementation of our work is available at https://github.com/shijieS/SST.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
少年愁发布了新的文献求助10
刚刚
刚刚
guozizi发布了新的文献求助30
刚刚
科目三应助困困采纳,获得10
刚刚
科研小白完成签到,获得积分10
刚刚
烟花应助Luhh采纳,获得10
刚刚
1秒前
Maxstein完成签到,获得积分10
1秒前
NexusExplorer应助leesen采纳,获得10
1秒前
2秒前
qianchen完成签到,获得积分10
2秒前
2秒前
寇博翔发布了新的文献求助10
2秒前
2秒前
3秒前
MySun完成签到,获得积分10
3秒前
Bethan完成签到,获得积分10
3秒前
3秒前
英姑应助sttail采纳,获得10
4秒前
健忘的芷荷完成签到,获得积分10
4秒前
机灵安白完成签到,获得积分10
5秒前
慕青应助啵啵虎采纳,获得10
5秒前
5秒前
昏睡的祥完成签到 ,获得积分10
5秒前
5秒前
ronalbo完成签到,获得积分20
5秒前
shengse发布了新的文献求助20
5秒前
Nyuki完成签到,获得积分10
6秒前
6秒前
泡泡糖完成签到 ,获得积分10
6秒前
6秒前
BK2008完成签到,获得积分10
6秒前
77发布了新的文献求助10
6秒前
7秒前
华无心完成签到,获得积分10
7秒前
香香完成签到,获得积分10
7秒前
7秒前
木木发布了新的文献求助10
7秒前
4564321完成签到,获得积分10
7秒前
苏silence发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997