Deep Affinity Network for Multiple Object Tracking

计算机科学 人工智能 视频跟踪 计算机视觉 深度学习 目标检测 帧(网络) 标杆管理 联想(心理学) 对象(语法) 模式识别(心理学) 跟踪(教育) 利用 哲学 营销 业务 心理学 认识论 电信 计算机安全 教育学
作者
Shijie Sun,Naveed Akhtar,Huansheng Song,Ajmal Mian,Mubarak Shah
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:143
标识
DOI:10.1109/tpami.2019.2929520
摘要

Multiple Object Tracking (MOT) plays an important role in solving many fundamental problems in video analysis and computer vision. Most MOT methods employ two steps: Object Detection and Data Association. The first step detects objects of interest in every frame of a video, and the second establishes correspondence between the detected objects in different frames to obtain their tracks. Object detection has made tremendous progress in the last few years due to deep learning. However, data association for tracking still relies on hand crafted constraints such as appearance, motion, spatial proximity, grouping etc. to compute affinities between the objects in different frames. In this paper, we harness the power of deep learning for data association in tracking by jointly modeling object appearances and their affinities between different frames in an end-to-end fashion. The proposed Deep Affinity Network (DAN) learns compact, yet comprehensive features of pre-detected objects at several levels of abstraction, and performs exhaustive pairing permutations of those features in any two frames to infer object affinities. DAN also accounts for multiple objects appearing and disappearing between video frames. We exploit the resulting efficient affinity computations to associate objects in the current frame deep into the previous frames for reliable on-line tracking. Our technique is evaluated on popular multiple object tracking challenges MOT15, MOT17 and UA-DETRAC. Comprehensive benchmarking under twelve evaluation metrics demonstrates that our approach is among the best performing techniques on the leader board for these challenges. The open source implementation of our work is available at https://github.com/shijieS/SST.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
builda发布了新的文献求助10
刚刚
1秒前
所所应助栾花花采纳,获得10
1秒前
Deannn778发布了新的文献求助10
2秒前
科研通AI6应助西米采纳,获得10
3秒前
3秒前
关于我发布了新的文献求助10
3秒前
zhuboujs发布了新的文献求助10
3秒前
6秒前
ZZH发布了新的文献求助10
6秒前
6秒前
漂亮的凛完成签到,获得积分10
7秒前
天天快乐应助7890733采纳,获得10
7秒前
卡冈图雅完成签到,获得积分10
7秒前
7秒前
孟雯毓完成签到,获得积分10
7秒前
8秒前
jiao发布了新的文献求助10
8秒前
8秒前
8秒前
莫妮卡卡发布了新的文献求助10
10秒前
10秒前
conjee完成签到,获得积分10
11秒前
11秒前
水鱼发布了新的文献求助10
11秒前
OFish发布了新的文献求助10
12秒前
12秒前
顺顺尼完成签到,获得积分10
12秒前
甜甜灵槐发布了新的文献求助10
13秒前
开心的傲安完成签到,获得积分10
15秒前
任性茉莉发布了新的文献求助10
15秒前
15秒前
15秒前
bkagyin应助Deannn778采纳,获得10
16秒前
ZN发布了新的文献求助10
16秒前
关于我完成签到,获得积分10
17秒前
李健应助OFish采纳,获得10
17秒前
18秒前
ding应助寂寞的故事采纳,获得30
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430904
求助须知:如何正确求助?哪些是违规求助? 4543966
关于积分的说明 14190032
捐赠科研通 4462380
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437982
关于科研通互助平台的介绍 1414566