Deep Affinity Network for Multiple Object Tracking

计算机科学 人工智能 视频跟踪 计算机视觉 深度学习 目标检测 帧(网络) 标杆管理 联想(心理学) 对象(语法) 模式识别(心理学) 跟踪(教育) 利用 哲学 营销 业务 心理学 认识论 电信 计算机安全 教育学
作者
Shijie Sun,Naveed Akhtar,Huansheng Song,Ajmal Mian,Mubarak Shah
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:143
标识
DOI:10.1109/tpami.2019.2929520
摘要

Multiple Object Tracking (MOT) plays an important role in solving many fundamental problems in video analysis and computer vision. Most MOT methods employ two steps: Object Detection and Data Association. The first step detects objects of interest in every frame of a video, and the second establishes correspondence between the detected objects in different frames to obtain their tracks. Object detection has made tremendous progress in the last few years due to deep learning. However, data association for tracking still relies on hand crafted constraints such as appearance, motion, spatial proximity, grouping etc. to compute affinities between the objects in different frames. In this paper, we harness the power of deep learning for data association in tracking by jointly modeling object appearances and their affinities between different frames in an end-to-end fashion. The proposed Deep Affinity Network (DAN) learns compact, yet comprehensive features of pre-detected objects at several levels of abstraction, and performs exhaustive pairing permutations of those features in any two frames to infer object affinities. DAN also accounts for multiple objects appearing and disappearing between video frames. We exploit the resulting efficient affinity computations to associate objects in the current frame deep into the previous frames for reliable on-line tracking. Our technique is evaluated on popular multiple object tracking challenges MOT15, MOT17 and UA-DETRAC. Comprehensive benchmarking under twelve evaluation metrics demonstrates that our approach is among the best performing techniques on the leader board for these challenges. The open source implementation of our work is available at https://github.com/shijieS/SST.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
开朗梦曼完成签到 ,获得积分20
刚刚
coollz发布了新的文献求助10
刚刚
刚刚
HuanhuanGao完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
Molecule完成签到,获得积分10
2秒前
脑洞疼应助yuyu采纳,获得10
3秒前
3秒前
4秒前
SciGPT应助shais采纳,获得10
4秒前
飘逸的山柏完成签到 ,获得积分10
4秒前
4秒前
5秒前
嘴嘴完成签到 ,获得积分20
6秒前
usr12完成签到,获得积分10
6秒前
wuxunxun2015发布了新的文献求助10
6秒前
望空发布了新的文献求助10
7秒前
脑洞疼应助快乐花卷采纳,获得10
8秒前
9秒前
9秒前
嘿嘿发布了新的文献求助10
9秒前
大大大漂亮完成签到 ,获得积分10
10秒前
10秒前
YXT981221发布了新的文献求助10
10秒前
10秒前
一一应助炙热的墨镜采纳,获得20
11秒前
11秒前
科研通AI6应助绿灯请通行采纳,获得30
11秒前
12秒前
隐形的大有完成签到,获得积分10
12秒前
13秒前
无花果应助keke采纳,获得10
13秒前
研友_8RyzBZ发布了新的文献求助10
13秒前
打打应助高玉峰采纳,获得10
13秒前
赘婿应助海的蓝色是水采纳,获得10
13秒前
ethereal发布了新的文献求助10
14秒前
Nicole发布了新的文献求助10
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781