Deep Affinity Network for Multiple Object Tracking

计算机科学 人工智能 视频跟踪 计算机视觉 深度学习 目标检测 帧(网络) 标杆管理 联想(心理学) 对象(语法) 模式识别(心理学) 跟踪(教育) 利用 哲学 营销 业务 心理学 认识论 电信 计算机安全 教育学
作者
Shijie Sun,Naveed Akhtar,Huansheng Song,Ajmal Mian,Mubarak Shah
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:143
标识
DOI:10.1109/tpami.2019.2929520
摘要

Multiple Object Tracking (MOT) plays an important role in solving many fundamental problems in video analysis and computer vision. Most MOT methods employ two steps: Object Detection and Data Association. The first step detects objects of interest in every frame of a video, and the second establishes correspondence between the detected objects in different frames to obtain their tracks. Object detection has made tremendous progress in the last few years due to deep learning. However, data association for tracking still relies on hand crafted constraints such as appearance, motion, spatial proximity, grouping etc. to compute affinities between the objects in different frames. In this paper, we harness the power of deep learning for data association in tracking by jointly modeling object appearances and their affinities between different frames in an end-to-end fashion. The proposed Deep Affinity Network (DAN) learns compact, yet comprehensive features of pre-detected objects at several levels of abstraction, and performs exhaustive pairing permutations of those features in any two frames to infer object affinities. DAN also accounts for multiple objects appearing and disappearing between video frames. We exploit the resulting efficient affinity computations to associate objects in the current frame deep into the previous frames for reliable on-line tracking. Our technique is evaluated on popular multiple object tracking challenges MOT15, MOT17 and UA-DETRAC. Comprehensive benchmarking under twelve evaluation metrics demonstrates that our approach is among the best performing techniques on the leader board for these challenges. The open source implementation of our work is available at https://github.com/shijieS/SST.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
没烦恼完成签到,获得积分10
1秒前
zz完成签到 ,获得积分10
1秒前
Owen应助TingtingGZ采纳,获得10
1秒前
pomfret完成签到 ,获得积分10
3秒前
没烦恼发布了新的文献求助10
5秒前
童万明发布了新的文献求助10
5秒前
阳阳完成签到,获得积分10
6秒前
11秒前
四月是你的谎言完成签到 ,获得积分10
15秒前
王昭完成签到 ,获得积分10
16秒前
112233发布了新的文献求助20
16秒前
17秒前
17秒前
富华路完成签到,获得积分10
18秒前
18秒前
18秒前
壮观青亦完成签到 ,获得积分10
19秒前
祁问儿完成签到 ,获得积分10
20秒前
Ccccn完成签到,获得积分10
20秒前
21秒前
22秒前
不吃香菜发布了新的文献求助30
23秒前
RLV完成签到,获得积分10
23秒前
Shuaibin_Pei发布了新的文献求助10
25秒前
科研混子完成签到,获得积分10
26秒前
王志新完成签到,获得积分10
27秒前
dly7777发布了新的文献求助10
27秒前
cff完成签到,获得积分10
28秒前
老鼠咕噜发布了新的文献求助10
29秒前
leodu完成签到,获得积分10
29秒前
30秒前
zhuzhu发布了新的文献求助10
31秒前
科研通AI2S应助Shuaibin_Pei采纳,获得10
33秒前
勤恳睿渊发布了新的文献求助10
34秒前
fhbsdufh完成签到,获得积分10
34秒前
35秒前
36秒前
阳光皮带完成签到,获得积分20
37秒前
fawr完成签到 ,获得积分10
37秒前
dly7777完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511