Deep Affinity Network for Multiple Object Tracking

计算机科学 人工智能 视频跟踪 计算机视觉 深度学习 目标检测 帧(网络) 标杆管理 联想(心理学) 对象(语法) 模式识别(心理学) 跟踪(教育) 利用 哲学 营销 业务 心理学 认识论 电信 计算机安全 教育学
作者
Shijie Sun,Naveed Akhtar,Huansheng Song,Ajmal Mian,Mubarak Shah
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:143
标识
DOI:10.1109/tpami.2019.2929520
摘要

Multiple Object Tracking (MOT) plays an important role in solving many fundamental problems in video analysis and computer vision. Most MOT methods employ two steps: Object Detection and Data Association. The first step detects objects of interest in every frame of a video, and the second establishes correspondence between the detected objects in different frames to obtain their tracks. Object detection has made tremendous progress in the last few years due to deep learning. However, data association for tracking still relies on hand crafted constraints such as appearance, motion, spatial proximity, grouping etc. to compute affinities between the objects in different frames. In this paper, we harness the power of deep learning for data association in tracking by jointly modeling object appearances and their affinities between different frames in an end-to-end fashion. The proposed Deep Affinity Network (DAN) learns compact, yet comprehensive features of pre-detected objects at several levels of abstraction, and performs exhaustive pairing permutations of those features in any two frames to infer object affinities. DAN also accounts for multiple objects appearing and disappearing between video frames. We exploit the resulting efficient affinity computations to associate objects in the current frame deep into the previous frames for reliable on-line tracking. Our technique is evaluated on popular multiple object tracking challenges MOT15, MOT17 and UA-DETRAC. Comprehensive benchmarking under twelve evaluation metrics demonstrates that our approach is among the best performing techniques on the leader board for these challenges. The open source implementation of our work is available at https://github.com/shijieS/SST.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气小天鹅完成签到 ,获得积分10
1秒前
fanzi完成签到 ,获得积分10
1秒前
windyhill完成签到,获得积分10
3秒前
鳗鱼紫萱完成签到,获得积分10
4秒前
我必定发nature关注了科研通微信公众号
4秒前
GG波波发布了新的文献求助10
5秒前
华仔应助晴云采纳,获得10
7秒前
快乐小狗完成签到 ,获得积分10
7秒前
珞珈完成签到,获得积分10
7秒前
Ya完成签到,获得积分10
7秒前
谦让文昊完成签到,获得积分10
8秒前
小红勇闯科研界完成签到,获得积分10
10秒前
科研通AI2S应助长安采纳,获得10
12秒前
12秒前
13秒前
Amber完成签到,获得积分10
13秒前
13秒前
teborlee完成签到,获得积分10
14秒前
xinxin完成签到,获得积分10
14秒前
SYLH应助鳗鱼鸽子采纳,获得10
14秒前
YY完成签到,获得积分10
15秒前
老德完成签到,获得积分10
15秒前
靓丽的熠彤完成签到,获得积分10
16秒前
深情海秋完成签到,获得积分10
16秒前
17秒前
歇洛克完成签到,获得积分10
18秒前
cao完成签到,获得积分20
18秒前
为你博弈完成签到,获得积分10
19秒前
19秒前
于情信芳完成签到,获得积分10
19秒前
庚小马发布了新的文献求助10
19秒前
淡然妙竹发布了新的文献求助10
20秒前
炒栗子发布了新的文献求助10
20秒前
晴云发布了新的文献求助10
20秒前
21秒前
PHW完成签到,获得积分10
21秒前
monly应助Fin2046采纳,获得30
22秒前
Hello应助JJG采纳,获得10
22秒前
李健的小迷弟应助WJH采纳,获得10
22秒前
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048