清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Dynamic Time Sequence Recognition and Knowledge Mining Method Based on the Hidden Markov Models (HMMs) for Pipeline Safety Monitoring With Φ-OTDR

隐马尔可夫模型 管道(软件) 计算机科学 模式识别(心理学) 人工智能 支持向量机 时域 领域(数学) 特征(语言学) 机器学习 数据挖掘 序列(生物学) 信号(编程语言) 语音识别 计算机视觉 语言学 数学 遗传学 生物 哲学 程序设计语言 纯数学
作者
Huijuan Wu,Xiangrong Liu,Yao Xiao,Yunjiang Rao
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:37 (19): 4991-5000 被引量:93
标识
DOI:10.1109/jlt.2019.2926745
摘要

With the rapid development and extensive applications of phase-sensitive optical time-domain reflectometry to long distance pipeline safety monitoring, it is still challenging to find a very efficient way to achieve highly correct recognition and really deep understanding of physical events sensed in a wide dynamic environment, as the vibration signals usually exhibit non-linear and non-stationary characteristics caused by the complicated environments. In this paper, a dynamic time sequence recognition and knowledge mining method based on the hidden Markov models (HMMs) is proposed to solve this problem. First, local structure feature of the signal is extracted in multiple analysis domains in the time sequence order; and then the HMMs are trained, built, and used to mine the temporal evolution information and identify the sequential state process of typical events. The experimental results with real field test data show that the average recognition accuracy of this paper is as high as 98.2% for frequently encountered five typical events along buried pipelines. All the related performance metrics such as precision, recall, and F-score are better than those traditional machine learning methods such, RF, XGB, DT, and BN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
11秒前
15秒前
18秒前
平常易烟发布了新的文献求助10
21秒前
23秒前
量子星尘发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
45秒前
龙猫爱看书完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
1分钟前
大雪封山完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
能干的语芙完成签到 ,获得积分10
2分钟前
juan完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
sue发布了新的文献求助20
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
赘婿应助sue采纳,获得30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
sue完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
nmslwsnd250发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661054
求助须知:如何正确求助?哪些是违规求助? 3222214
关于积分的说明 9744049
捐赠科研通 2931835
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734518