A Dynamic Time Sequence Recognition and Knowledge Mining Method Based on the Hidden Markov Models (HMMs) for Pipeline Safety Monitoring With Φ-OTDR

隐马尔可夫模型 管道(软件) 计算机科学 模式识别(心理学) 人工智能 支持向量机 时域 领域(数学) 特征(语言学) 机器学习 数据挖掘 序列(生物学) 信号(编程语言) 语音识别 计算机视觉 语言学 数学 遗传学 生物 哲学 程序设计语言 纯数学
作者
Huijuan Wu,Xiangrong Liu,Yao Xiao,Yunjiang Rao
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:37 (19): 4991-5000 被引量:100
标识
DOI:10.1109/jlt.2019.2926745
摘要

With the rapid development and extensive applications of phase-sensitive optical time-domain reflectometry to long distance pipeline safety monitoring, it is still challenging to find a very efficient way to achieve highly correct recognition and really deep understanding of physical events sensed in a wide dynamic environment, as the vibration signals usually exhibit non-linear and non-stationary characteristics caused by the complicated environments. In this paper, a dynamic time sequence recognition and knowledge mining method based on the hidden Markov models (HMMs) is proposed to solve this problem. First, local structure feature of the signal is extracted in multiple analysis domains in the time sequence order; and then the HMMs are trained, built, and used to mine the temporal evolution information and identify the sequential state process of typical events. The experimental results with real field test data show that the average recognition accuracy of this paper is as high as 98.2% for frequently encountered five typical events along buried pipelines. All the related performance metrics such as precision, recall, and F-score are better than those traditional machine learning methods such, RF, XGB, DT, and BN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张曼玉完成签到,获得积分10
刚刚
刚刚
刚刚
柠檬树完成签到,获得积分10
1秒前
1秒前
空咻咻发布了新的文献求助10
1秒前
念双发布了新的文献求助10
2秒前
娃哈哈读研版完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
张宝发布了新的文献求助10
4秒前
5秒前
苞米公主完成签到,获得积分10
5秒前
空咻咻完成签到,获得积分10
5秒前
彭于晏应助陶军辉采纳,获得10
6秒前
7秒前
赵坤煊发布了新的文献求助20
7秒前
jasmine完成签到,获得积分10
7秒前
张利双发布了新的文献求助10
7秒前
李某某发布了新的文献求助10
8秒前
8秒前
脑洞疼应助无语的柠檬采纳,获得10
9秒前
9秒前
可爱的函函应助ninghan采纳,获得10
9秒前
FashionBoy应助圆锥香蕉采纳,获得10
9秒前
ppp发布了新的文献求助10
9秒前
zoiaii发布了新的文献求助10
9秒前
9秒前
科研通AI6应助asdasd采纳,获得10
10秒前
健康的机器猫完成签到 ,获得积分10
10秒前
10秒前
脑洞疼应助sad采纳,获得10
10秒前
852应助念双采纳,获得10
11秒前
ingyu完成签到,获得积分10
11秒前
12秒前
脑洞疼应助Tangtang561o采纳,获得10
12秒前
13秒前
花花发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406795
求助须知:如何正确求助?哪些是违规求助? 4524516
关于积分的说明 14098938
捐赠科研通 4438379
什么是DOI,文献DOI怎么找? 2436217
邀请新用户注册赠送积分活动 1428245
关于科研通互助平台的介绍 1406340