Application of artificial neural networks to paleoceanographic data

人工神经网络 集合(抽象数据类型) 反向传播 数据集 计算机科学 人工智能 算法 数据挖掘 程序设计语言
作者
Björn A. Malmgren,Ulf Nordlund
出处
期刊:Palaeogeography, Palaeoclimatology, Palaeoecology [Elsevier BV]
卷期号:136 (1-4): 359-373 被引量:103
标识
DOI:10.1016/s0031-0182(97)00031-x
摘要

Artificial neural networks are computer systems that have the ability to ‘learn’ a set of output, or target, vectors from a set of input vectors. Learning is achieved by self-adjustment of a set of parameters to minimize the error between a desired output and the actual network output. We have explored the potential of this approach in paleoceanography by application of a neural network algorithm to a problem involving prediction of sea surface-water temperatures from relative abundances of planktonic foraminifer species in the southern Indian Ocean. We employed a backpropagation (BP) network to assess how well it was able to predict the actual summer and winter surface-water temperatures. We compared the results with those obtained from statistical methods previously used for temperature predictions: Imbrie-Kipp Transfer Functions, the Modern Analog Technique, and Soft Independent Modelling of Class Analogy. The efficiency of predictions was tested using the Leaving One Out technique in which each of the observations in the data set is left out one at a time, while the remaining observations are used to generate a predictor. The accuracy of the predictor is then tested on the observation left out by comparison with its actual value. A set of tests using 1, 2, 3, 4, 5, and 10 neurons (processing elements) in a 3-layer BP network showed that a network with 3 neurons gave the smallest errors of prediction for both summer and winter temperatures, 0.71 and 0.76, respectively. Corresponding errors for the statistical pattern-recognition techniques ranged between 1.01 and 1.26 for summer temperatures and 1.05-1.13 for winter temperatures. Hence, predictions of paleotemperatures from new data on planktonic foraminifer relative abundances in the southern Indian Ocean may be made with a precision of ±0.7-0.8°C using the BP network and ±1.0–1.3°C using the statistical pattern-recognition procedures. The BP network was thus the most successful among the methods employed here for temperature predictions. Artificial neural networks may, therefore, be seen as a viable alternative to more conventional approaches to data analysis in paleoceanography.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想飞的猪发布了新的文献求助20
刚刚
微纳组刘同完成签到,获得积分10
刚刚
ZX0501完成签到,获得积分10
刚刚
waive完成签到,获得积分10
1秒前
1秒前
2秒前
ting5260发布了新的文献求助10
2秒前
sss发布了新的文献求助10
2秒前
3秒前
领导范儿应助CX采纳,获得10
3秒前
3秒前
4秒前
老实乌冬面完成签到 ,获得积分10
4秒前
俊秀的思山完成签到,获得积分10
4秒前
雪白绿旋完成签到,获得积分10
5秒前
小鱼完成签到 ,获得积分10
6秒前
所所应助不挤牙膏采纳,获得10
6秒前
mmm发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
巧克力完成签到,获得积分10
8秒前
Starry完成签到,获得积分10
8秒前
真的不想干活了完成签到,获得积分10
8秒前
9秒前
whatever举报稳重向南求助涉嫌违规
9秒前
没吃饭应助从容的冰凡采纳,获得30
9秒前
丶呆久自然萌完成签到,获得积分10
9秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
9秒前
烟花应助HYT采纳,获得10
10秒前
insane完成签到,获得积分10
10秒前
勤恳的黑夜完成签到 ,获得积分10
10秒前
李扒皮发布了新的文献求助10
10秒前
一二发布了新的文献求助10
11秒前
MI完成签到,获得积分10
11秒前
14秒前
欢喜的皮卡丘完成签到,获得积分10
14秒前
想飞的猪完成签到,获得积分10
15秒前
YH应助张雯雯采纳,获得50
15秒前
15秒前
zora完成签到,获得积分10
15秒前
华仔应助闲散人采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953623
求助须知:如何正确求助?哪些是违规求助? 3499390
关于积分的说明 11095224
捐赠科研通 3229945
什么是DOI,文献DOI怎么找? 1785807
邀请新用户注册赠送积分活动 869573
科研通“疑难数据库(出版商)”最低求助积分说明 801479