Application of artificial neural networks to paleoceanographic data

人工神经网络 集合(抽象数据类型) 反向传播 数据集 计算机科学 人工智能 算法 数据挖掘 程序设计语言
作者
Björn A. Malmgren,Ulf Nordlund
出处
期刊:Palaeogeography, Palaeoclimatology, Palaeoecology [Elsevier]
卷期号:136 (1-4): 359-373 被引量:103
标识
DOI:10.1016/s0031-0182(97)00031-x
摘要

Artificial neural networks are computer systems that have the ability to ‘learn’ a set of output, or target, vectors from a set of input vectors. Learning is achieved by self-adjustment of a set of parameters to minimize the error between a desired output and the actual network output. We have explored the potential of this approach in paleoceanography by application of a neural network algorithm to a problem involving prediction of sea surface-water temperatures from relative abundances of planktonic foraminifer species in the southern Indian Ocean. We employed a backpropagation (BP) network to assess how well it was able to predict the actual summer and winter surface-water temperatures. We compared the results with those obtained from statistical methods previously used for temperature predictions: Imbrie-Kipp Transfer Functions, the Modern Analog Technique, and Soft Independent Modelling of Class Analogy. The efficiency of predictions was tested using the Leaving One Out technique in which each of the observations in the data set is left out one at a time, while the remaining observations are used to generate a predictor. The accuracy of the predictor is then tested on the observation left out by comparison with its actual value. A set of tests using 1, 2, 3, 4, 5, and 10 neurons (processing elements) in a 3-layer BP network showed that a network with 3 neurons gave the smallest errors of prediction for both summer and winter temperatures, 0.71 and 0.76, respectively. Corresponding errors for the statistical pattern-recognition techniques ranged between 1.01 and 1.26 for summer temperatures and 1.05-1.13 for winter temperatures. Hence, predictions of paleotemperatures from new data on planktonic foraminifer relative abundances in the southern Indian Ocean may be made with a precision of ±0.7-0.8°C using the BP network and ±1.0–1.3°C using the statistical pattern-recognition procedures. The BP network was thus the most successful among the methods employed here for temperature predictions. Artificial neural networks may, therefore, be seen as a viable alternative to more conventional approaches to data analysis in paleoceanography.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
聆听雨完成签到,获得积分10
1秒前
Ymj完成签到,获得积分10
1秒前
怡然若雁完成签到,获得积分10
1秒前
1秒前
坚强亦丝应助游大达采纳,获得10
2秒前
@小小搬砖瑞完成签到,获得积分10
2秒前
怡然若雁发布了新的文献求助10
4秒前
coc关注了科研通微信公众号
4秒前
双双完成签到,获得积分10
4秒前
瑶625发布了新的文献求助10
4秒前
Strike完成签到,获得积分10
5秒前
调皮纸飞机完成签到,获得积分20
5秒前
董小李完成签到,获得积分10
5秒前
5秒前
研友_8yN60L完成签到,获得积分10
6秒前
zhanzhanzhan发布了新的文献求助10
6秒前
科研通AI5应助自爱悠然采纳,获得10
6秒前
6秒前
Accept应助胡枝子采纳,获得30
6秒前
Strike发布了新的文献求助10
7秒前
Rsoup完成签到,获得积分10
7秒前
8秒前
zz发布了新的文献求助10
8秒前
sfzz完成签到,获得积分10
8秒前
8秒前
如履平川完成签到 ,获得积分10
8秒前
大个应助阳光海云采纳,获得50
8秒前
8秒前
新青年完成签到,获得积分0
8秒前
8秒前
现代的又柔应助研友_8yN60L采纳,获得10
9秒前
9秒前
李健应助傲娇的云朵采纳,获得10
9秒前
9秒前
9秒前
liudiqiu完成签到,获得积分10
9秒前
Akashi完成签到,获得积分10
9秒前
风中珩完成签到 ,获得积分10
10秒前
LIU发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740