Application of artificial neural networks to paleoceanographic data

人工神经网络 集合(抽象数据类型) 反向传播 数据集 计算机科学 人工智能 算法 数据挖掘 程序设计语言
作者
Björn A. Malmgren,Ulf Nordlund
出处
期刊:Palaeogeography, Palaeoclimatology, Palaeoecology [Elsevier BV]
卷期号:136 (1-4): 359-373 被引量:103
标识
DOI:10.1016/s0031-0182(97)00031-x
摘要

Artificial neural networks are computer systems that have the ability to ‘learn’ a set of output, or target, vectors from a set of input vectors. Learning is achieved by self-adjustment of a set of parameters to minimize the error between a desired output and the actual network output. We have explored the potential of this approach in paleoceanography by application of a neural network algorithm to a problem involving prediction of sea surface-water temperatures from relative abundances of planktonic foraminifer species in the southern Indian Ocean. We employed a backpropagation (BP) network to assess how well it was able to predict the actual summer and winter surface-water temperatures. We compared the results with those obtained from statistical methods previously used for temperature predictions: Imbrie-Kipp Transfer Functions, the Modern Analog Technique, and Soft Independent Modelling of Class Analogy. The efficiency of predictions was tested using the Leaving One Out technique in which each of the observations in the data set is left out one at a time, while the remaining observations are used to generate a predictor. The accuracy of the predictor is then tested on the observation left out by comparison with its actual value. A set of tests using 1, 2, 3, 4, 5, and 10 neurons (processing elements) in a 3-layer BP network showed that a network with 3 neurons gave the smallest errors of prediction for both summer and winter temperatures, 0.71 and 0.76, respectively. Corresponding errors for the statistical pattern-recognition techniques ranged between 1.01 and 1.26 for summer temperatures and 1.05-1.13 for winter temperatures. Hence, predictions of paleotemperatures from new data on planktonic foraminifer relative abundances in the southern Indian Ocean may be made with a precision of ±0.7-0.8°C using the BP network and ±1.0–1.3°C using the statistical pattern-recognition procedures. The BP network was thus the most successful among the methods employed here for temperature predictions. Artificial neural networks may, therefore, be seen as a viable alternative to more conventional approaches to data analysis in paleoceanography.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
冷酷三德完成签到 ,获得积分10
1秒前
1秒前
NexusExplorer应助Yang采纳,获得10
1秒前
2秒前
石头完成签到,获得积分10
2秒前
2秒前
xzh完成签到,获得积分10
2秒前
求助哥完成签到,获得积分10
2秒前
wanci应助colossus0257采纳,获得20
2秒前
黄叶飞完成签到,获得积分10
3秒前
香蕉觅云应助GCY采纳,获得10
3秒前
ffw1完成签到,获得积分10
3秒前
春风完成签到,获得积分10
3秒前
4秒前
金金完成签到,获得积分10
4秒前
ccs完成签到,获得积分10
4秒前
小张z完成签到,获得积分10
4秒前
幽兰完成签到,获得积分20
4秒前
俭朴舞仙完成签到 ,获得积分10
4秒前
酷酷的乐菱完成签到,获得积分10
5秒前
LongY完成签到,获得积分10
6秒前
pengyuyan发布了新的文献求助10
6秒前
yy发布了新的文献求助10
6秒前
Honahlee发布了新的文献求助10
6秒前
脑洞疼应助Nancy采纳,获得10
6秒前
无情的匪完成签到 ,获得积分10
7秒前
weiyayayayayaya完成签到,获得积分10
7秒前
说好不吃肥肉的完成签到,获得积分10
7秒前
曾建完成签到 ,获得积分10
7秒前
LIKO完成签到,获得积分10
7秒前
MNing完成签到 ,获得积分10
7秒前
任生平发布了新的文献求助10
8秒前
岁月静好发布了新的文献求助10
8秒前
搜集达人应助YuanF采纳,获得10
8秒前
ljy完成签到,获得积分10
8秒前
天天快乐应助5433采纳,获得10
8秒前
8秒前
韶邑完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5269562
求助须知:如何正确求助?哪些是违规求助? 4427995
关于积分的说明 13781921
捐赠科研通 4305390
什么是DOI,文献DOI怎么找? 2362762
邀请新用户注册赠送积分活动 1358427
关于科研通互助平台的介绍 1321122