Application of artificial neural networks to paleoceanographic data

人工神经网络 集合(抽象数据类型) 反向传播 数据集 计算机科学 人工智能 算法 数据挖掘 程序设计语言
作者
Björn A. Malmgren,Ulf Nordlund
出处
期刊:Palaeogeography, Palaeoclimatology, Palaeoecology [Elsevier]
卷期号:136 (1-4): 359-373 被引量:103
标识
DOI:10.1016/s0031-0182(97)00031-x
摘要

Artificial neural networks are computer systems that have the ability to ‘learn’ a set of output, or target, vectors from a set of input vectors. Learning is achieved by self-adjustment of a set of parameters to minimize the error between a desired output and the actual network output. We have explored the potential of this approach in paleoceanography by application of a neural network algorithm to a problem involving prediction of sea surface-water temperatures from relative abundances of planktonic foraminifer species in the southern Indian Ocean. We employed a backpropagation (BP) network to assess how well it was able to predict the actual summer and winter surface-water temperatures. We compared the results with those obtained from statistical methods previously used for temperature predictions: Imbrie-Kipp Transfer Functions, the Modern Analog Technique, and Soft Independent Modelling of Class Analogy. The efficiency of predictions was tested using the Leaving One Out technique in which each of the observations in the data set is left out one at a time, while the remaining observations are used to generate a predictor. The accuracy of the predictor is then tested on the observation left out by comparison with its actual value. A set of tests using 1, 2, 3, 4, 5, and 10 neurons (processing elements) in a 3-layer BP network showed that a network with 3 neurons gave the smallest errors of prediction for both summer and winter temperatures, 0.71 and 0.76, respectively. Corresponding errors for the statistical pattern-recognition techniques ranged between 1.01 and 1.26 for summer temperatures and 1.05-1.13 for winter temperatures. Hence, predictions of paleotemperatures from new data on planktonic foraminifer relative abundances in the southern Indian Ocean may be made with a precision of ±0.7-0.8°C using the BP network and ±1.0–1.3°C using the statistical pattern-recognition procedures. The BP network was thus the most successful among the methods employed here for temperature predictions. Artificial neural networks may, therefore, be seen as a viable alternative to more conventional approaches to data analysis in paleoceanography.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊乌龟发布了新的文献求助10
刚刚
1秒前
哈哈哈完成签到,获得积分10
2秒前
2秒前
3秒前
sixly00完成签到,获得积分10
3秒前
JamesPei应助xybc采纳,获得10
4秒前
干净的尔柳完成签到,获得积分20
4秒前
荆玉豪完成签到 ,获得积分10
5秒前
lee发布了新的文献求助10
6秒前
阜睿发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
wjy321发布了新的文献求助10
7秒前
E10100发布了新的文献求助10
7秒前
8秒前
kangkang完成签到 ,获得积分10
9秒前
共享精神应助快乐科学家采纳,获得10
10秒前
耍酷的白山完成签到,获得积分10
11秒前
京港风发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
13秒前
大模型应助季候风采纳,获得10
13秒前
小二郎应助yoyo采纳,获得10
15秒前
施世宏完成签到,获得积分10
16秒前
如意念烟完成签到,获得积分10
16秒前
ym发布了新的文献求助20
16秒前
AHU_Why发布了新的文献求助10
16秒前
英吉利25发布了新的文献求助10
17秒前
畅快菠萝完成签到,获得积分10
19秒前
忧伤的南莲完成签到,获得积分10
20秒前
光催化超人完成签到,获得积分20
20秒前
20秒前
young完成签到,获得积分20
20秒前
安冉然发布了新的文献求助10
20秒前
苯醌完成签到,获得积分10
23秒前
chen完成签到 ,获得积分10
23秒前
浮游应助奋斗的老牛采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424683
求助须知:如何正确求助?哪些是违规求助? 4539082
关于积分的说明 14165073
捐赠科研通 4456131
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483