Application of artificial neural networks to paleoceanographic data

人工神经网络 集合(抽象数据类型) 反向传播 数据集 计算机科学 人工智能 算法 数据挖掘 程序设计语言
作者
Björn A. Malmgren,Ulf Nordlund
出处
期刊:Palaeogeography, Palaeoclimatology, Palaeoecology [Elsevier BV]
卷期号:136 (1-4): 359-373 被引量:103
标识
DOI:10.1016/s0031-0182(97)00031-x
摘要

Artificial neural networks are computer systems that have the ability to ‘learn’ a set of output, or target, vectors from a set of input vectors. Learning is achieved by self-adjustment of a set of parameters to minimize the error between a desired output and the actual network output. We have explored the potential of this approach in paleoceanography by application of a neural network algorithm to a problem involving prediction of sea surface-water temperatures from relative abundances of planktonic foraminifer species in the southern Indian Ocean. We employed a backpropagation (BP) network to assess how well it was able to predict the actual summer and winter surface-water temperatures. We compared the results with those obtained from statistical methods previously used for temperature predictions: Imbrie-Kipp Transfer Functions, the Modern Analog Technique, and Soft Independent Modelling of Class Analogy. The efficiency of predictions was tested using the Leaving One Out technique in which each of the observations in the data set is left out one at a time, while the remaining observations are used to generate a predictor. The accuracy of the predictor is then tested on the observation left out by comparison with its actual value. A set of tests using 1, 2, 3, 4, 5, and 10 neurons (processing elements) in a 3-layer BP network showed that a network with 3 neurons gave the smallest errors of prediction for both summer and winter temperatures, 0.71 and 0.76, respectively. Corresponding errors for the statistical pattern-recognition techniques ranged between 1.01 and 1.26 for summer temperatures and 1.05-1.13 for winter temperatures. Hence, predictions of paleotemperatures from new data on planktonic foraminifer relative abundances in the southern Indian Ocean may be made with a precision of ±0.7-0.8°C using the BP network and ±1.0–1.3°C using the statistical pattern-recognition procedures. The BP network was thus the most successful among the methods employed here for temperature predictions. Artificial neural networks may, therefore, be seen as a viable alternative to more conventional approaches to data analysis in paleoceanography.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵欣阳完成签到 ,获得积分10
刚刚
八十完成签到,获得积分10
1秒前
2秒前
科目三应助专注的可乐采纳,获得10
2秒前
maqin发布了新的文献求助10
2秒前
白河夜船发布了新的文献求助10
2秒前
2秒前
小白系列产品完成签到,获得积分20
3秒前
linsns完成签到 ,获得积分10
3秒前
赵小麦发布了新的文献求助10
3秒前
怡然思萱发布了新的文献求助10
3秒前
3秒前
轩辕唯雪发布了新的文献求助10
4秒前
熙熙完成签到 ,获得积分10
4秒前
4秒前
王宁欣发布了新的文献求助10
4秒前
浩浩桑发布了新的文献求助10
4秒前
xlj发布了新的文献求助10
4秒前
5秒前
Ava应助科研人采纳,获得10
5秒前
5秒前
CipherSage应助开心的白昼采纳,获得10
5秒前
5秒前
6秒前
Roxie完成签到,获得积分10
6秒前
6秒前
6秒前
xiaoxiao发布了新的文献求助10
7秒前
7秒前
彩色青亦发布了新的文献求助10
8秒前
8秒前
尊敬忆秋发布了新的文献求助10
8秒前
8秒前
CiCi发布了新的文献求助10
8秒前
Square完成签到,获得积分10
9秒前
泯珉发布了新的文献求助10
9秒前
10秒前
chloe发布了新的文献求助10
10秒前
繁荣的立果完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559624
求助须知:如何正确求助?哪些是违规求助? 3986027
关于积分的说明 12341437
捐赠科研通 3656691
什么是DOI,文献DOI怎么找? 2014540
邀请新用户注册赠送积分活动 1049268
科研通“疑难数据库(出版商)”最低求助积分说明 937586