Application of artificial neural networks to paleoceanographic data

人工神经网络 集合(抽象数据类型) 反向传播 数据集 计算机科学 人工智能 算法 数据挖掘 程序设计语言
作者
Björn A. Malmgren,Ulf Nordlund
出处
期刊:Palaeogeography, Palaeoclimatology, Palaeoecology [Elsevier]
卷期号:136 (1-4): 359-373 被引量:103
标识
DOI:10.1016/s0031-0182(97)00031-x
摘要

Artificial neural networks are computer systems that have the ability to ‘learn’ a set of output, or target, vectors from a set of input vectors. Learning is achieved by self-adjustment of a set of parameters to minimize the error between a desired output and the actual network output. We have explored the potential of this approach in paleoceanography by application of a neural network algorithm to a problem involving prediction of sea surface-water temperatures from relative abundances of planktonic foraminifer species in the southern Indian Ocean. We employed a backpropagation (BP) network to assess how well it was able to predict the actual summer and winter surface-water temperatures. We compared the results with those obtained from statistical methods previously used for temperature predictions: Imbrie-Kipp Transfer Functions, the Modern Analog Technique, and Soft Independent Modelling of Class Analogy. The efficiency of predictions was tested using the Leaving One Out technique in which each of the observations in the data set is left out one at a time, while the remaining observations are used to generate a predictor. The accuracy of the predictor is then tested on the observation left out by comparison with its actual value. A set of tests using 1, 2, 3, 4, 5, and 10 neurons (processing elements) in a 3-layer BP network showed that a network with 3 neurons gave the smallest errors of prediction for both summer and winter temperatures, 0.71 and 0.76, respectively. Corresponding errors for the statistical pattern-recognition techniques ranged between 1.01 and 1.26 for summer temperatures and 1.05-1.13 for winter temperatures. Hence, predictions of paleotemperatures from new data on planktonic foraminifer relative abundances in the southern Indian Ocean may be made with a precision of ±0.7-0.8°C using the BP network and ±1.0–1.3°C using the statistical pattern-recognition procedures. The BP network was thus the most successful among the methods employed here for temperature predictions. Artificial neural networks may, therefore, be seen as a viable alternative to more conventional approaches to data analysis in paleoceanography.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Z6QQmn完成签到,获得积分10
刚刚
刚刚
1秒前
weissbier发布了新的文献求助10
1秒前
王贺发布了新的文献求助10
2秒前
2秒前
灿灿发布了新的文献求助10
2秒前
2秒前
wenbo完成签到,获得积分0
3秒前
啊怪完成签到 ,获得积分10
3秒前
追寻元菱发布了新的文献求助10
3秒前
郑雯予发布了新的文献求助10
3秒前
等风等你完成签到,获得积分10
4秒前
简单向露完成签到,获得积分10
4秒前
4秒前
儒雅的平安关注了科研通微信公众号
4秒前
暴躁的元灵完成签到,获得积分10
4秒前
0℃发布了新的文献求助10
5秒前
科研通AI2S应助小谢采纳,获得30
5秒前
穆柏杨完成签到,获得积分10
5秒前
zzz发布了新的文献求助10
5秒前
小兔叽完成签到,获得积分10
5秒前
轻松博超发布了新的文献求助10
5秒前
6秒前
干饭啦完成签到,获得积分10
6秒前
6秒前
哒布6完成签到 ,获得积分10
6秒前
6秒前
向上的小v完成签到 ,获得积分10
6秒前
fhkq完成签到,获得积分10
6秒前
微凉完成签到,获得积分10
7秒前
7秒前
一心难求完成签到,获得积分10
7秒前
7秒前
chelsey完成签到,获得积分10
7秒前
Orange应助爱撒娇的子默采纳,获得10
7秒前
西木完成签到,获得积分10
7秒前
tefuir0707完成签到,获得积分10
7秒前
CTtoF完成签到,获得积分10
8秒前
sumee完成签到,获得积分10
8秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5348298
求助须知:如何正确求助?哪些是违规求助? 4482432
关于积分的说明 13950813
捐赠科研通 4381161
什么是DOI,文献DOI怎么找? 2407200
邀请新用户注册赠送积分活动 1399822
关于科研通互助平台的介绍 1373090