数学
奇点
非线性系统
索波列夫空间
数学分析
曲率
临界指数
标量(数学)
无穷
反向
指数
薛定谔方程
数学物理
物理
几何学
量子力学
语言学
哲学
缩放比例
标识
DOI:10.1090/s0002-9947-04-03769-9
摘要
We study a time-independent nonlinear Schrödinger equation with an attractive inverse square potential and a nonautonomous nonlinearity whose power is the critical Sobolev exponent. The problem shares a strong resemblance with the prescribed scalar curvature problem on the standard sphere. Particular attention is paid to the blow-up possibilities, i.e. the critical points at infinity of the corresponding variational problem. Due to the strong singularity in the potential, some new phenomenon appear. A complete existence result is obtained in dimension 4 using a detailed analysis of the gradient flow lines.
科研通智能强力驱动
Strongly Powered by AbleSci AI