CT-PET weighted image fusion for separately scanned whole body rat

图像配准 正电子发射断层摄影术 图像融合 人工智能 PET-CT 计算机视觉 直方图 计算机科学 磁共振成像 图像分辨率 全身成像 核医学 图像(数学) 医学 放射科
作者
Jung Wook Suh,Oh‐Kyu Kwon,Dustin Scheinost,Albert J. Sinusas,Gary W. Cline,Xenophon Papademetris
出处
期刊:Medical Physics [Wiley]
卷期号:39 (1): 533-542 被引量:21
标识
DOI:10.1118/1.3672167
摘要

Purpose: The limited resolution and lack of spatial information in positron emission tomography (PET) images require the complementary anatomic information from the computed tomography (CT) and/or magnetic resonance imaging (MRI). Therefore, multimodality image fusion techniques such as PET/CT are critical in mapping the functional images to structural images and thus facilitate the interpretation of PET studies. In our experimental situation, the CT and PET images are acquired in separate scanners at different times and the inherent differences in the imaging protocols produce significant nonrigid changes between the two acquisitions in addition to dissimilar image characteristics. The registration conditions are also poor because CT images have artifacts due to the limitation of current scanning settings, while PET images are very blurry (in transmission-PET) and have vague anatomical structure boundaries (in emission-PET). Methods: The authors present a new method for whole body small animal multimodal registration. In particular, the authors register whole body rat CT image and PET images using a weighted demons algorithm. The authors use both the transmission-PET and the emission-PET images in the registration process emphasizing particular regions of the moving transmission-PET image using the emission-PET image. After a rigid transformation and a histogram matching between the CT and the transmission-PET images, the authors deformably register the transmission-PET image to the CT image with weights based on the intensity-normalized emission-PET image. For the deformable registration process, the authors develop a weighted demons registration method that can give preferences to particular regions of the input image using a weight image. Results: The authors validate the results with nine rat image sets using the M-Hausdorff distance (M-HD) similarity measure with different outlier-suppression parameters (OSP). In comparison with standard methods such as the regular demons and the normalized mutual information (NMI)-based nonrigid free-form deformation (FFD) registration, the proposed weighted demons registration method shows average M-HD errors: 3.99 ± 1.37 (OSP = 10), 5.04 ± 1.59 (OSP = 20) and 5.92 ± 1.61 (OSP = ∞) with statistical significance (p < 0.0003) respectively, while NMI-based nonrigid FFD has average M-HD errors: 5.74 ± 1.73 (OSP = 10), 7.40 ± 7.84 (OSP = 20) and 9.83 ± 4.13 (OSP = ∞), and the regular demons has average M-HD errors: 6.79 ± 0.83 (OSP = 10), 9.19 ± 2.39 (OSP = 20) and 11.63 ± 3.99 (OSP = ∞), respectively. In addition to M-HD comparisons, the visual comparisons on the faint-edged region between the CT and the aligned PET images also show the encouraging improvements over the other methods. Conclusions: In the whole body multimodal registration between CT and PET images, the utilization of both the transmission-PET and the emission-PET images in the registration process by emphasizing particular regions of the transmission-PET image using an emission-PET image is effective. This method holds promise for other image fusion applications where multiple (more than two) input images should be registered into a single informative image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铁幕发布了新的文献求助10
2秒前
2秒前
xixi完成签到,获得积分10
2秒前
3秒前
betty2009完成签到,获得积分10
3秒前
xixi发布了新的文献求助10
3秒前
咯咯完成签到,获得积分10
3秒前
饭团不吃鱼完成签到,获得积分10
4秒前
5秒前
顾矜应助iuuuuu采纳,获得10
5秒前
桥本完成签到 ,获得积分10
5秒前
王王的苏完成签到,获得积分10
5秒前
zwtaihua1025发布了新的文献求助10
5秒前
5秒前
6秒前
xin关闭了xin文献求助
6秒前
奚门长海发布了新的文献求助10
6秒前
彭于晏应助自然卷采纳,获得10
7秒前
7秒前
完美世界应助南非的猫采纳,获得10
7秒前
咯咯发布了新的文献求助10
7秒前
科研通AI5应助小宋采纳,获得10
8秒前
英俊的铭应助Doctor采纳,获得10
8秒前
一一应助大力猫崽采纳,获得30
8秒前
luo发布了新的文献求助10
9秒前
称心曼安发布了新的文献求助10
9秒前
9秒前
tesla发布了新的文献求助10
10秒前
10秒前
科研通AI5应助一个采纳,获得10
10秒前
MchemG应助else采纳,获得10
11秒前
11秒前
baocq发布了新的文献求助10
11秒前
Akim应助猪猪hero采纳,获得10
12秒前
玉轮发布了新的文献求助10
12秒前
12秒前
zhangyan00004完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553582
求助须知:如何正确求助?哪些是违规求助? 3129521
关于积分的说明 9382550
捐赠科研通 2828636
什么是DOI,文献DOI怎么找? 1555065
邀请新用户注册赠送积分活动 725800
科研通“疑难数据库(出版商)”最低求助积分说明 715212