Utilizing Zebrafish to Identify Anti‐(Lymph)Angiogenic Compounds for Cancer Treatment: Promise and Future Challenges

斑马鱼 医学 癌症 血管生成 转移 癌症研究 淋巴 淋巴系统 背景(考古学) 癌细胞 病理 生物 内科学 生物化学 基因 古生物学
作者
Kazuhide S. Okuda,Hui Mei Lee,Vithya Velaithan,Mei Fong Ng,Vyomesh Patel
出处
期刊:Microcirculation [Wiley]
卷期号:23 (6): 389-405 被引量:11
标识
DOI:10.1111/micc.12289
摘要

Cancer metastasis which predominantly occurs through blood and lymphatic vessels, is the leading cause of death in cancer patients. Consequently, several anti-angiogenic agents have been approved as therapeutic agents for human cancers such as metastatic renal cell carcinoma. Also, anti-lymphangiogenic drugs such as monoclonal antibodies VGX-100 and IMC-3C5 have undergone phase I clinical trials for advanced and metastatic solid tumors. Although anti-tumor-associated angiogenesis has proven to be a promising therapeutic strategy for human cancers, this approach is fraught with toxicities and development of drug resistance. This emphasizes the need for alternative anti-(lymph)angiogenic drugs. The use of zebrafish has become accepted as an established model for high-throughput screening, vascular biology, and cancer research. Importantly, various zebrafish transgenic lines have now been generated that can readily discriminate different vascular compartments. This now enables detailed in vivo studies that are relevant to both human physiological and tumor (lymph)angiogenesis to be conducted in zebrafish. This review highlights recent advancements in the zebrafish anti-vascular screening platform and showcases promising new anti-(lymph)angiogenic compounds that have been derived from this model. In addition, this review discusses the promises and challenges of the zebrafish model in the context of anti-(lymph)angiogenic compound discovery for cancer treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助专一的台灯采纳,获得10
1秒前
3秒前
sunaijia应助玩儿采纳,获得10
5秒前
www完成签到 ,获得积分10
6秒前
6秒前
ableble发布了新的文献求助10
7秒前
7秒前
刺猬完成签到,获得积分10
10秒前
12秒前
情怀应助gxy采纳,获得10
12秒前
13秒前
CHANYEOLYANG发布了新的文献求助10
14秒前
味子橘完成签到 ,获得积分10
14秒前
15秒前
floette发布了新的文献求助10
16秒前
20秒前
积极以云发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
21秒前
banfen完成签到,获得积分10
22秒前
22秒前
23秒前
123发布了新的文献求助10
24秒前
困困困完成签到,获得积分10
25秒前
科研通AI2S应助大方蛟凤采纳,获得10
25秒前
科研通AI2S应助大方蛟凤采纳,获得10
25秒前
香蕉觅云应助精神小伙采纳,获得10
26秒前
banfen发布了新的文献求助10
27秒前
王振强发布了新的文献求助10
27秒前
28秒前
28秒前
123发布了新的文献求助10
29秒前
30秒前
十一发布了新的文献求助10
30秒前
Owen应助要减肥的雪莲采纳,获得10
31秒前
32秒前
小鲤鱼吐泡泡泡完成签到,获得积分0
34秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388143
求助须知:如何正确求助?哪些是违规求助? 3000598
关于积分的说明 8792342
捐赠科研通 2686639
什么是DOI,文献DOI怎么找? 1471747
科研通“疑难数据库(出版商)”最低求助积分说明 680498
邀请新用户注册赠送积分活动 673224