碳纳米管
材料科学
偏振器
纳米技术
光电流
碳纳米管的光学性质
薄脆饼
薄膜
碳纳米管的力学性能
纳米管
各向异性
光电子学
光学
双折射
物理
作者
Xiaowei He,Weilu Gao,Lijuan Xie,Bo Li,Qi Zhang,Sidong Lei,John Robinson,Erik H. Hároz,Stephen K. Doorn,Weipeng Wang,Róbert Vajtai,Pulickel M. Ajayan,W. Wade Adams,Robert H. Hauge,Junichiro Kono
标识
DOI:10.1038/nnano.2016.44
摘要
The one-dimensional character of electrons, phonons and excitons in individual single-walled carbon nanotubes leads to extremely anisotropic electronic, thermal and optical properties. However, despite significant efforts to develop ways to produce large-scale architectures of aligned nanotubes, macroscopic manifestations of such properties remain limited. Here, we show that large (>cm2) monodomain films of aligned single-walled carbon nanotubes can be prepared using slow vacuum filtration. The produced films are globally aligned within ±1.5° (a nematic order parameter of ∼1) and are highly packed, containing 1 × 106 nanotubes in a cross-sectional area of 1 μm2. The method works for nanotubes synthesized by various methods, and film thickness is controllable from a few nanometres to ∼100 nm. We use the approach to create ideal polarizers in the terahertz frequency range and, by combining the method with recently developed sorting techniques, highly aligned and chirality-enriched nanotube thin-film devices. Semiconductor-enriched devices exhibit polarized light emission and polarization-dependent photocurrent, as well as anisotropic conductivities and transistor action with high on/off ratios. Large films of aligned and closely packed single-walled carbon nanotubes can be prepared through slow vacuum filtration, and used to create terahertz polarizers, thin-film transistors, polarized light emission devices, and polarization-sensitive detectors.
科研通智能强力驱动
Strongly Powered by AbleSci AI