地高辛
药代动力学
药理学
生物利用度
口服
药物相互作用
P-糖蛋白
化学
医学
内科学
生物化学
多重耐药
抗生素
心力衰竭
作者
Vincent Castagné,Laurence Bonhomme-Faivre,Saı̈k Urien,Makram Ben Reguiga,Mireille Soursac,François Gimenez,Robert Farinotti
摘要
P-glycoprotein (P-gp) is an ATP-dependent efflux membrane transporter involved in many drug pharmacokinetics in humans. Decreasing its expression could enhance the bioavailability of substrates as digoxin. We have recently found that human recombinant interleukin-2 (rIL2) in vivo decreases P-gp expression in intestine and brain of mice and modifies oral digoxin pharmacokinetics. The aim of the study was to evaluate the involvement of bioavailability in the rIL2 pretreatment effect on digoxin pharmacokinetics by comparing oral and i.v. digoxin pharmacokinetics before and after rIL2 pretreatment (10 microg/kg). We also tried to show the possible effect of a low rIL2 dose (1 microg/kg) pretreatment on oral digoxin pharmacokinetics. First, adult Swiss mice received a single oral or i.v. dose of digoxin (0.03 mg/kg). Two weeks later, the same animals were treated by rIL2 i.p. twice a day (10 microg/kg) for 4 days and received digoxin again at day 5. As well, another group received oral digoxin (0.03 mg/kg) with a 1 microg/kg rIL2 pretreatment. Blood was collected after digoxin administration with and without rIL2 pretreatment. Digoxin pharmacokinetics were described by a one-compartment model. The 10 microg/kg rIL2 pretreatment did not modify i.v. digoxin pharmacokinetics, whereas oral digoxin pharmacokinetics were significantly modified by the 10 microg/kg rIL2 pretreatment and not by the 1 microg/kg rIL2 pretreatment. The decrease of P-gp activity, caused by rIL2 (10 microg/kg), increased digoxin bioavailability. An increase in exposure and intracellular level of drugs is expected from rIL2 pretreatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI