Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation

纳米流体 材料科学 太阳能集热器中的纳米流体 太阳能 光热治疗 等离子纳米粒子 集中太阳能 蒸发 光电子学 等离子体子 纳米颗粒 光电-热混合太阳能集热器 纳米技术 热力学 物理 生物 生态学
作者
Xinzhi Wang,Yurong He,Xing Liu,Lei Shi,Jiaqi Zhu
出处
期刊:Solar Energy [Elsevier]
卷期号:157: 35-46 被引量:194
标识
DOI:10.1016/j.solener.2017.08.015
摘要

Steam production has a wide range of applications such as seawater desalination, waste sterilization, and power generation. The utilization of solar energy for this purpose has attracted much attention due to its inexhaustibility and pollution-free nature. Here, direct solar steam generation at low-concentrated solar power using plasmonic nanofluids containing gold nanoparticles (Au NPs) was investigated experimentally. The key factors required for highly efficient solar steam generation, including Au NP concentration and solar power intensity, were studied in a simulated solar system by measuring the water weight loss and system temperature change. The best evaporation performance was obtained using a plasmonic nanofluid containing 178 ppm of Au NPs under 10 sun (1 sun = 1 kW m−2) illumination intensity, and the total efficiency reached 65%. However, the total efficiency of pure water was only 16%, which means that the plasmonic nanofluids reached a ∼300% enhancement in efficiency. Higher solar power led to a higher evaporation rate, higher specific vapor productivity (SVP), and higher Au NP concentrations resulted in better evaporation performance. Localized solar heating at the fluid-air interface was shown to contribute more to solar steam generation than to bulk fluid heating. Furthermore, the model of photothermal heating of plasmonic nanoparticle was established and the numerical results demonstrated the photothermal conversion process of plasmonic NPs from the light absorption to the heat dissipation into the bulk fluid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuliu发布了新的文献求助10
刚刚
刚刚
523发布了新的文献求助10
刚刚
popcorn完成签到,获得积分10
1秒前
C2完成签到,获得积分10
1秒前
Agernon应助小小技术工采纳,获得10
2秒前
Rsoup发布了新的文献求助10
2秒前
九川发布了新的文献求助30
2秒前
漂亮的初蓝完成签到,获得积分10
2秒前
丰知然应助紫菜采纳,获得10
2秒前
科目三应助顺顺采纳,获得20
2秒前
桐桐应助自信富采纳,获得10
3秒前
健忘捕发布了新的文献求助10
3秒前
4秒前
叫滚滚发布了新的文献求助10
4秒前
请叫我风吹麦浪应助rain采纳,获得30
5秒前
123完成签到,获得积分10
5秒前
xx完成签到,获得积分10
5秒前
ZD完成签到 ,获得积分10
6秒前
科研通AI5应助Rui采纳,获得10
6秒前
yyj发布了新的文献求助10
6秒前
斯文静曼发布了新的文献求助10
6秒前
k7应助快乐滑板采纳,获得10
8秒前
假行僧发布了新的文献求助10
8秒前
8秒前
Wyoou完成签到,获得积分10
9秒前
9秒前
9秒前
故意的傲玉应助lll采纳,获得10
9秒前
10秒前
请叫我风吹麦浪应助lm采纳,获得10
10秒前
10秒前
10秒前
11秒前
科研通AI5应助水獭采纳,获得10
12秒前
12秒前
12秒前
研友_nv2r4n发布了新的文献求助10
13秒前
喵叽发布了新的文献求助10
13秒前
槐夏完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762