Prediction of the Leadership Style of an Emergent Leader Using Audio and Visual Nonverbal Features

非语言交际 领导风格 计算机科学 风格(视觉艺术) 人工智能 启发式 变革型领导 心理学 认知心理学 自然语言处理 社会心理学 沟通 历史 考古
作者
Cigdem Beyan,Francesca Capozzi,Cristina Becchio,Vittorio Murino
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 441-456 被引量:50
标识
DOI:10.1109/tmm.2017.2740062
摘要

The coordination of a leader with group members is very important for an effective leadership given that this figure is the person who actually manages the team members to achieve a desired goal. Investigating the leadership and especially the leadership style is a prominent research topic in social and organizational psychology. However this is a new problem in social signal processing that can actually make valuable contributions by analyzing multimodal data in a more effective and efficient way. In this work we identify the leadership style of an emergent leader (i.e. the leader who naturally arises from a group not designated) as autocratic or democratic. The proposed method is applied to a dataset in-the-wild; in other words there is no role-playing which is novel for this problem. Multiple kernel learning (MKL) using multimodal nonverbal features is utilized to predict leadership styles that proved to achieve better predictions as compared to traditional learning methods. Thanks to MKL and a simple heuristic proposed the best performing features are also identified showing that better predictions can be reached only by using those features. Additionally correlation analysis between the extracted nonverbal features and the results of social psychology questionnaire is also performed. This shows that significantly high correlations exist for speaking activity based and prosodic nonverbal features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高兴白开水完成签到,获得积分10
刚刚
ABB完成签到,获得积分10
刚刚
情怀应助夏目采纳,获得10
刚刚
55完成签到,获得积分10
1秒前
lx840518完成签到,获得积分20
1秒前
忧郁的太英完成签到 ,获得积分10
2秒前
2秒前
小杨完成签到,获得积分10
2秒前
2秒前
拉拉王完成签到,获得积分10
3秒前
米十二完成签到,获得积分10
3秒前
asteria发布了新的文献求助10
4秒前
JRG完成签到,获得积分10
4秒前
tsunami完成签到 ,获得积分10
4秒前
简洁应助温柔体贴阿尔法采纳,获得20
4秒前
4秒前
刘晓慧发布了新的文献求助10
4秒前
小孟发布了新的文献求助10
4秒前
chloe完成签到 ,获得积分10
5秒前
5秒前
852应助Fang采纳,获得30
5秒前
xingxinghan完成签到 ,获得积分10
6秒前
7秒前
罗啦啦大大滴完成签到,获得积分10
7秒前
8秒前
开朗芸完成签到,获得积分10
8秒前
9秒前
星辰大海应助Abdurrahman采纳,获得10
9秒前
小滨发布了新的文献求助10
9秒前
酒泡曲奇完成签到,获得积分10
10秒前
Wsyyy完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
烟花应助北风采纳,获得10
11秒前
小捷子发布了新的文献求助10
12秒前
12秒前
12秒前
asteria完成签到,获得积分10
13秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122356
求助须知:如何正确求助?哪些是违规求助? 2772858
关于积分的说明 7714795
捐赠科研通 2428308
什么是DOI,文献DOI怎么找? 1289700
科研通“疑难数据库(出版商)”最低求助积分说明 621484
版权声明 600183