非语言交际
领导风格
计算机科学
风格(视觉艺术)
人工智能
启发式
变革型领导
心理学
认知心理学
自然语言处理
社会心理学
沟通
历史
考古
作者
Cigdem Beyan,Francesca Capozzi,Cristina Becchio,Vittorio Murino
标识
DOI:10.1109/tmm.2017.2740062
摘要
The coordination of a leader with group members is very important for an effective leadership given that this figure is the person who actually manages the team members to achieve a desired goal. Investigating the leadership and especially the leadership style is a prominent research topic in social and organizational psychology. However this is a new problem in social signal processing that can actually make valuable contributions by analyzing multimodal data in a more effective and efficient way. In this work we identify the leadership style of an emergent leader (i.e. the leader who naturally arises from a group not designated) as autocratic or democratic. The proposed method is applied to a dataset in-the-wild; in other words there is no role-playing which is novel for this problem. Multiple kernel learning (MKL) using multimodal nonverbal features is utilized to predict leadership styles that proved to achieve better predictions as compared to traditional learning methods. Thanks to MKL and a simple heuristic proposed the best performing features are also identified showing that better predictions can be reached only by using those features. Additionally correlation analysis between the extracted nonverbal features and the results of social psychology questionnaire is also performed. This shows that significantly high correlations exist for speaking activity based and prosodic nonverbal features.
科研通智能强力驱动
Strongly Powered by AbleSci AI