Bridge Centrality: A Network Approach to Understanding Comorbidity

中心性 桥(图论) 中间性中心性 共病 精神病理学 计算机科学 网络分析 心理学 临床心理学 医学 工程类 统计 精神科 数学 电气工程 内科学
作者
Payton J. Jones,Ruofan Ma,Richard J. McNally
出处
期刊:Multivariate Behavioral Research [Informa]
卷期号:56 (2): 353-367 被引量:837
标识
DOI:10.1080/00273171.2019.1614898
摘要

Recently, researchers in clinical psychology have endeavored to create network models of the relationships between symptoms, both within and across mental disorders. Symptoms that connect two mental disorders are called "bridge symptoms." Unfortunately, no formal quantitative methods for identifying these bridge symptoms exist. Accordingly, we developed four network statistics to identify bridge symptoms: bridge strength, bridge betweenness, bridge closeness, and bridge expected influence. These statistics are nonspecific to the type of network estimated, making them potentially useful in individual-level psychometric networks, group-level psychometric networks, and networks outside the field of psychopathology such as social networks. We first tested the fidelity of our statistics in predicting bridge nodes in a series of simulations. Averaged across all conditions, the statistics achieved a sensitivity of 92.7% and a specificity of 84.9%. By simulating datasets of varying sample sizes, we tested the robustness of our statistics, confirming their suitability for network psychometrics. Furthermore, we simulated the contagion of one mental disorder to another, showing that deactivating bridge nodes prevents the spread of comorbidity (i.e., one disorder activating another). Eliminating nodes based on bridge statistics was more effective than eliminating nodes high on traditional centrality statistics in preventing comorbidity. Finally, we applied our algorithms to 18 group-level empirical comorbidity networks from published studies and discussed the implications of this analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情芷荷发布了新的文献求助10
2秒前
random完成签到,获得积分10
3秒前
3秒前
果果瑞宁完成签到,获得积分10
3秒前
4秒前
机智小虾米完成签到,获得积分20
4秒前
goldenfleece完成签到,获得积分10
5秒前
科研通AI2S应助学者采纳,获得10
5秒前
小杨完成签到,获得积分10
6秒前
sutharsons应助科研通管家采纳,获得30
7秒前
7秒前
Ava应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得30
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
Eric_Lee2000应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
7秒前
王子完成签到,获得积分10
8秒前
李繁蕊发布了新的文献求助10
9秒前
诚心的大碗应助明理念桃采纳,获得20
9秒前
10秒前
meng完成签到,获得积分10
10秒前
学者完成签到,获得积分10
10秒前
英俊的铭应助愉快盼曼采纳,获得10
11秒前
11秒前
小媛完成签到 ,获得积分10
12秒前
学术小白完成签到,获得积分20
12秒前
赘婿应助xiaomeng采纳,获得10
12秒前
Khr1stINK发布了新的文献求助10
12秒前
清新的苑博完成签到,获得积分10
12秒前
13秒前
果果瑞宁发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808