Deep Learning: A Primer for Radiologists

医学 深度学习 人工智能 计算机科学 底漆(化妆品) 医学物理学 放射科 有机化学 化学
作者
Gabriel Chartrand,Phillip M. Cheng,Eugene Vorontsov,Michal Drozdzal,Simon Turcotte,Christopher Pal,Samuel Kadoury,An Tang
出处
期刊:Radiographics [Radiological Society of North America]
卷期号:37 (7): 2113-2131 被引量:946
标识
DOI:10.1148/rg.2017170077
摘要

Deep learning is a class of machine learning methods that are gaining success and attracting interest in many domains, including computer vision, speech recognition, natural language processing, and playing games. Deep learning methods produce a mapping from raw inputs to desired outputs (eg, image classes). Unlike traditional machine learning methods, which require hand-engineered feature extraction from inputs, deep learning methods learn these features directly from data. With the advent of large datasets and increased computing power, these methods can produce models with exceptional performance. These models are multilayer artificial neural networks, loosely inspired by biologic neural systems. Weighted connections between nodes (neurons) in the network are iteratively adjusted based on example pairs of inputs and target outputs by back-propagating a corrective error signal through the network. For computer vision tasks, convolutional neural networks (CNNs) have proven to be effective. Recently, several clinical applications of CNNs have been proposed and studied in radiology for classification, detection, and segmentation tasks. This article reviews the key concepts of deep learning for clinical radiologists, discusses technical requirements, describes emerging applications in clinical radiology, and outlines limitations and future directions in this field. Radiologists should become familiar with the principles and potential applications of deep learning in medical imaging. ©RSNA, 2017.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘雯完成签到,获得积分10
刚刚
clxgene完成签到,获得积分10
刚刚
烟花应助风车采纳,获得10
刚刚
秀xiu完成签到,获得积分10
刚刚
落后蓝天完成签到,获得积分10
1秒前
1秒前
2秒前
小贾同学发布了新的文献求助10
2秒前
dddww完成签到,获得积分10
3秒前
ruanyh完成签到,获得积分10
3秒前
4秒前
超级忆雪完成签到,获得积分10
5秒前
5秒前
翔翔超人发布了新的文献求助10
6秒前
简单Kaze发布了新的文献求助10
6秒前
Orange应助blingbling采纳,获得10
6秒前
酷酷珠发布了新的文献求助20
6秒前
6秒前
7秒前
7秒前
8秒前
小董不懂发布了新的文献求助10
9秒前
9秒前
浅辰发布了新的文献求助10
9秒前
9秒前
向天完成签到,获得积分20
10秒前
10秒前
10秒前
氙气飘飘发布了新的文献求助20
11秒前
圣洁呀嘿发布了新的文献求助10
11秒前
渔舟唱晚发布了新的文献求助10
12秒前
12秒前
国靖发布了新的文献求助10
12秒前
zz完成签到,获得积分10
12秒前
14秒前
yinhe028发布了新的文献求助10
14秒前
山海发布了新的文献求助10
14秒前
15秒前
15秒前
杨绍伟完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312499
求助须知:如何正确求助?哪些是违规求助? 2945157
关于积分的说明 8523210
捐赠科研通 2620967
什么是DOI,文献DOI怎么找? 1433156
科研通“疑难数据库(出版商)”最低求助积分说明 664898
邀请新用户注册赠送积分活动 650255