Prognostics and Health Management: A Review of Vibration Based Bearing and Gear Health Indicators

预言 健康管理体系 方位(导航) 健康指标 地铁列车时刻表 组分(热力学) 计算机科学 可靠性工程 状态监测 结构健康监测 振动 工程类 风险分析(工程) 人工智能 结构工程 医学 人口 病理 物理 电气工程 操作系统 替代医学 环境卫生 热力学 量子力学
作者
Dong Wang,Kwok‐Leung Tsui,Qiang Miao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:6: 665-676 被引量:309
标识
DOI:10.1109/access.2017.2774261
摘要

Prognostics and health management is an emerging discipline to scientifically manage the health condition of engineering systems and their critical components. It mainly consists of three main aspects: construction of health indicators, remaining useful life prediction, and health management. Construction of health indicators aims to evaluate the system's current health condition and its critical components. Given the observations of a health indicator, prediction of the remaining useful life is used to infer the time when an engineering systems or a critical component will no longer perform its intended function. Health management involves planning the optimal maintenance schedule according to the system's current and future health condition, its critical components and the replacement costs. Construction of health indicators is the key to predicting the remaining useful life. Bearings and gears are the most common mechanical components in rotating machines, and their health conditions are of great concern in practice. Because it is difficult to measure and quantify the health conditions of bearings and gears in many cases, numerous vibration-based methods have been proposed to construct bearing and gear health indicators. This paper presents a thorough review of vibration-based bearing and gear health indicators constructed from mechanical signal processing, modeling, and machine learning. This review paper will be helpful for designing further advanced bearing and gear health indicators and provides a basis for predicting the remaining useful life of bearings and gears. Most of the bearing and gear health indicators reviewed in this paper are highly relevant to simulated and experimental run-to-failure data rather than artificially seeded bearing and gear fault data. Finally, some problems in the literature are highlighted and areas for future study are identified.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dgz完成签到,获得积分10
刚刚
雅雅完成签到 ,获得积分10
1秒前
小二郎应助湿地小怪兽采纳,获得10
1秒前
1秒前
ding应助自由寻冬采纳,获得10
1秒前
2秒前
2秒前
Yu发布了新的文献求助10
2秒前
4秒前
鳗鱼鞋垫发布了新的文献求助10
4秒前
儒雅晓霜完成签到,获得积分10
4秒前
5秒前
6秒前
时尚觅松发布了新的文献求助10
6秒前
zzz完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
112450195完成签到,获得积分10
7秒前
低调小狗发布了新的文献求助10
7秒前
as_eichi完成签到,获得积分10
8秒前
充电宝应助小池采纳,获得10
8秒前
ding应助贰什柒采纳,获得10
8秒前
要减肥的鹤完成签到,获得积分10
8秒前
小蘑菇应助li采纳,获得10
9秒前
9秒前
10秒前
kkk完成签到,获得积分10
10秒前
10秒前
10秒前
李子完成签到,获得积分10
11秒前
11秒前
善学以致用应助早日毕业采纳,获得10
11秒前
小耳朵完成签到,获得积分10
11秒前
孔大发布了新的文献求助10
11秒前
123发布了新的文献求助10
11秒前
黄宇航完成签到,获得积分10
12秒前
yiyi完成签到,获得积分20
12秒前
珊珊完成签到,获得积分10
12秒前
12秒前
ulung完成签到 ,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653573
求助须知:如何正确求助?哪些是违规求助? 4790162
关于积分的说明 15064753
捐赠科研通 4812180
什么是DOI,文献DOI怎么找? 2574341
邀请新用户注册赠送积分活动 1529955
关于科研通互助平台的介绍 1488680