Prognostics and Health Management: A Review of Vibration Based Bearing and Gear Health Indicators

预言 健康管理体系 方位(导航) 健康指标 地铁列车时刻表 组分(热力学) 计算机科学 可靠性工程 状态监测 结构健康监测 振动 工程类 风险分析(工程) 人工智能 结构工程 医学 人口 物理 替代医学 电气工程 病理 环境卫生 量子力学 热力学 操作系统
作者
Dong Wang,Kwok‐Leung Tsui,Qiang Miao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:6: 665-676 被引量:309
标识
DOI:10.1109/access.2017.2774261
摘要

Prognostics and health management is an emerging discipline to scientifically manage the health condition of engineering systems and their critical components. It mainly consists of three main aspects: construction of health indicators, remaining useful life prediction, and health management. Construction of health indicators aims to evaluate the system's current health condition and its critical components. Given the observations of a health indicator, prediction of the remaining useful life is used to infer the time when an engineering systems or a critical component will no longer perform its intended function. Health management involves planning the optimal maintenance schedule according to the system's current and future health condition, its critical components and the replacement costs. Construction of health indicators is the key to predicting the remaining useful life. Bearings and gears are the most common mechanical components in rotating machines, and their health conditions are of great concern in practice. Because it is difficult to measure and quantify the health conditions of bearings and gears in many cases, numerous vibration-based methods have been proposed to construct bearing and gear health indicators. This paper presents a thorough review of vibration-based bearing and gear health indicators constructed from mechanical signal processing, modeling, and machine learning. This review paper will be helpful for designing further advanced bearing and gear health indicators and provides a basis for predicting the remaining useful life of bearings and gears. Most of the bearing and gear health indicators reviewed in this paper are highly relevant to simulated and experimental run-to-failure data rather than artificially seeded bearing and gear fault data. Finally, some problems in the literature are highlighted and areas for future study are identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旧梦完成签到 ,获得积分10
1秒前
tramp应助xiamu采纳,获得20
2秒前
xingxingxing完成签到,获得积分10
3秒前
甜甜的悲发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
张钦奎发布了新的文献求助10
4秒前
4秒前
zhjg发布了新的文献求助10
5秒前
阿超完成签到,获得积分10
5秒前
FashionBoy应助凪凪采纳,获得10
7秒前
7秒前
wanci应助jinzhen采纳,获得10
8秒前
13发布了新的文献求助10
8秒前
小蘑菇应助甜甜的悲采纳,获得10
10秒前
GL发布了新的文献求助10
11秒前
袁超完成签到,获得积分10
11秒前
11秒前
忧郁盼夏发布了新的文献求助10
12秒前
12秒前
q792309106完成签到,获得积分10
13秒前
乖猫要努力应助郭小宝采纳,获得20
13秒前
q792309106发布了新的文献求助10
17秒前
17秒前
凪凪发布了新的文献求助10
17秒前
17秒前
情怀应助忧郁盼夏采纳,获得10
18秒前
wx完成签到,获得积分10
19秒前
20秒前
zyh完成签到 ,获得积分10
20秒前
20秒前
22秒前
24秒前
may发布了新的文献求助10
25秒前
HUU发布了新的文献求助10
25秒前
小蘑菇应助称心的时光采纳,获得10
26秒前
一定行发布了新的文献求助10
27秒前
29秒前
29秒前
斯文败类应助momo采纳,获得30
30秒前
妖妖灵发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173