Prognostics and Health Management: A Review of Vibration Based Bearing and Gear Health Indicators

预言 健康管理体系 方位(导航) 健康指标 地铁列车时刻表 组分(热力学) 计算机科学 可靠性工程 状态监测 结构健康监测 振动 工程类 风险分析(工程) 人工智能 结构工程 医学 人口 物理 替代医学 电气工程 病理 环境卫生 量子力学 热力学 操作系统
作者
Dong Wang,Kwok‐Leung Tsui,Qiang Miao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:6: 665-676 被引量:309
标识
DOI:10.1109/access.2017.2774261
摘要

Prognostics and health management is an emerging discipline to scientifically manage the health condition of engineering systems and their critical components. It mainly consists of three main aspects: construction of health indicators, remaining useful life prediction, and health management. Construction of health indicators aims to evaluate the system's current health condition and its critical components. Given the observations of a health indicator, prediction of the remaining useful life is used to infer the time when an engineering systems or a critical component will no longer perform its intended function. Health management involves planning the optimal maintenance schedule according to the system's current and future health condition, its critical components and the replacement costs. Construction of health indicators is the key to predicting the remaining useful life. Bearings and gears are the most common mechanical components in rotating machines, and their health conditions are of great concern in practice. Because it is difficult to measure and quantify the health conditions of bearings and gears in many cases, numerous vibration-based methods have been proposed to construct bearing and gear health indicators. This paper presents a thorough review of vibration-based bearing and gear health indicators constructed from mechanical signal processing, modeling, and machine learning. This review paper will be helpful for designing further advanced bearing and gear health indicators and provides a basis for predicting the remaining useful life of bearings and gears. Most of the bearing and gear health indicators reviewed in this paper are highly relevant to simulated and experimental run-to-failure data rather than artificially seeded bearing and gear fault data. Finally, some problems in the literature are highlighted and areas for future study are identified.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
benzene完成签到 ,获得积分10
刚刚
yanzilin发布了新的文献求助10
刚刚
苏素肃发布了新的文献求助10
1秒前
qifei完成签到 ,获得积分10
1秒前
舍瓦完成签到,获得积分10
2秒前
why完成签到,获得积分10
2秒前
木林森发布了新的文献求助10
2秒前
烂漫凡柔发布了新的文献求助10
2秒前
传奇3应助22采纳,获得10
3秒前
胡晓平完成签到,获得积分10
4秒前
Summer完成签到,获得积分10
4秒前
鲤鱼雨泽完成签到,获得积分10
4秒前
wzhnb完成签到,获得积分10
5秒前
nojego完成签到,获得积分10
5秒前
倩倩完成签到,获得积分10
5秒前
hhh完成签到 ,获得积分10
5秒前
苏苏完成签到 ,获得积分10
5秒前
ShanYexia完成签到,获得积分10
6秒前
星辰大海应助轻松豌豆采纳,获得10
6秒前
xyj完成签到,获得积分10
6秒前
上官若男应助jinzhituoyan采纳,获得10
7秒前
李健的小迷弟应助wzhnb采纳,获得10
9秒前
10秒前
WZL完成签到,获得积分10
10秒前
xiekunwhy完成签到,获得积分10
10秒前
大魔王完成签到 ,获得积分10
11秒前
啤酒半斤完成签到,获得积分10
11秒前
12秒前
淡然冬灵发布了新的文献求助10
12秒前
Ming完成签到,获得积分10
14秒前
durance完成签到,获得积分10
14秒前
tiger完成签到,获得积分10
14秒前
西因应助小新麻麻采纳,获得10
15秒前
九月发布了新的文献求助10
16秒前
刘大白发布了新的文献求助10
16秒前
隐形曼青应助jiaman1031采纳,获得10
16秒前
17秒前
宜菏发布了新的文献求助20
18秒前
19秒前
追寻翩跹完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685887
关于积分的说明 14840244
捐赠科研通 4675397
什么是DOI,文献DOI怎么找? 2538559
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471144