Environmental stresses often cause a rapid and excessive accumulation of reactive oxygen species (ROS), the toxicity of which is further amplified by downstream aldehyde production. Aldo-keto reductase (AKR) is a group of enzymes metabolizing aldehyde/ketone to the corresponding alcohol using NADPH as the cofactor. In this study, OsI_20197 (AKR4C15), a novel member of AKR4 subfamily C, was isolated and biochemically characterized. Kinetic studies on bacterially-expressed recombinant AKR4C15 revealed that the enzyme was capable of metabolizing a wide variety of aldehydes but clearly exhibited a preference for three carbon compounds, i.e. methylglyoxal, malondialdehyde and glyceraldehyde. In comparison with His-tagged proteins of AKR4C9 from Arabidopsis and several other rice AKR(s): OsI_04426, OsI_04428, OsI_04429, and OsI_15387, AKR4C15 was the one capable of most efficiently metabolizing MDA and had the highest value of catalytic efficiency, which was higher than the value of AKR4C9, approximately, by 30-fold; while its capability of metabolizing MG was on par with AKR4C9, OsI_04426 and OsI_04428 (AKR4C14); and was considerably higher than the activity of OsI_04429 and OsI_15387. In vivo research on transgenic Arabidopsis seedlings ectopically-expressing AKR4C15 showed that the levels of both MDA and MG were also significantly lower than the levels in wild-type seedlings under both normal and stress conditions, emphasizing the role of AKR4C15 in MG and MDA metabolism. In conclusion, AKR4C15, together with OsI_04426 and AKR4C14, may play protective roles against small reactive aldehydes and medium-chain aldehydes.