Mechanical confinement regulates cartilage matrix formation by chondrocytes

自愈水凝胶 软骨 机械转化 软骨细胞 应力松弛 粘弹性 细胞外基质 粘附 细胞生物学 材料科学 生物物理学 细胞粘附 组织工程 基质(化学分析) 化学 蠕动 生物医学工程 复合材料 解剖 生物 高分子化学 生物化学 医学
作者
Hong-Pyo Lee,Luo Gu,David Mooney,Marc E. Levenston,Ovijit Chaudhuri
出处
期刊:Nature Materials [Springer Nature]
卷期号:16 (12): 1243-1251 被引量:408
标识
DOI:10.1038/nmat4993
摘要

Cartilage tissue equivalents formed from hydrogels containing chondrocytes could provide a solution for replacing damaged cartilage. Previous approaches have often utilized elastic hydrogels. However, elastic stresses may restrict cartilage matrix formation and alter the chondrocyte phenotype. Here we investigated the use of viscoelastic hydrogels, in which stresses are relaxed over time and which exhibit creep, for three-dimensional (3D) culture of chondrocytes. We found that faster relaxation promoted a striking increase in the volume of interconnected cartilage matrix formed by chondrocytes. In slower relaxing gels, restriction of cell volume expansion by elastic stresses led to increased secretion of IL-1β, which in turn drove strong up-regulation of genes associated with cartilage degradation and cell death. As no cell-adhesion ligands are presented by the hydrogels, these results reveal cell sensing of cell volume confinement as an adhesion-independent mechanism of mechanotransduction in 3D culture, and highlight stress relaxation as a key design parameter for cartilage tissue engineering. The mechanical properties of biomaterials affect cell growth through mechanotransduction signals. Here, hydrogels with fast stress relaxation were developed and showed increased cartilage matrix formation by cartilage cells compared to slow relaxation hydrogels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只橘子完成签到 ,获得积分10
刚刚
1秒前
韭黄发布了新的文献求助10
1秒前
西瓜发布了新的文献求助10
1秒前
Ll发布了新的文献求助10
1秒前
1秒前
wcy关注了科研通微信公众号
1秒前
2秒前
2秒前
CipherSage应助爱喝冰可乐采纳,获得10
3秒前
3秒前
bdvdsrwteges完成签到,获得积分10
3秒前
鱼雷完成签到,获得积分10
4秒前
4秒前
天天快乐应助喜洋洋采纳,获得10
4秒前
PANSIXUAN完成签到 ,获得积分10
5秒前
善良香岚发布了新的文献求助10
5秒前
5秒前
huizi完成签到,获得积分20
5秒前
RichardZ完成签到,获得积分10
5秒前
5秒前
左左发布了新的文献求助10
6秒前
执着的怜寒应助哈哈哈haha采纳,获得40
6秒前
Cassie完成签到 ,获得积分10
7秒前
7秒前
雄i完成签到,获得积分10
7秒前
Chenly完成签到,获得积分10
8秒前
科目三应助韭黄采纳,获得10
8秒前
8秒前
轻松笙发布了新的文献求助10
8秒前
10秒前
10秒前
a1oft发布了新的文献求助10
11秒前
觅桃乌龙完成签到,获得积分10
11秒前
12秒前
melodyezi发布了新的文献求助10
13秒前
13秒前
FFFFFFF应助柚子采纳,获得10
13秒前
9℃发布了新的文献求助10
13秒前
MailkMonk发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759