Bottom-up Filling of Damascene Trenches with Cobalt By Electroplating Process

铜互连 材料科学 电镀 电镀(地质) 电解质 电流密度 扩散阻挡层 电阻率和电导率 扩散 短路 复合材料 电化学 电导率 冶金 电极 电压 图层(电子) 电气工程 化学 物理 工程类 物理化学 量子力学 地球物理学 热力学 地质学
作者
Chiao-Chien Wei,E. C. Chou,Steve Shih,Shih-Ming Lin
出处
期刊:Meeting abstracts 卷期号:MA2015-02 (23): 949-949 被引量:5
标识
DOI:10.1149/ma2015-02/23/949
摘要

1. Introduction: In advanced semiconductor chips, filling of the circuit such as contact vias, trenches and conductive interconnects typically consists of Cu due to its high electrical conductivity. However, Cu can diffuse into Si and SiO 2 and form silicides to alter the properties of the circuit. The Cu diffusion can be much severer in small critical dimensions (CD < 10nm) as it can cause an electrical connection between two interconnects, resulting in an electric shot to damage the circuit. Cobalt with low diffusion coefficient in Si and SiO 2 was considered as a filling material to replace Cu. In this study, Co filling was obtained by electroplating at a current density of 6.25mA/cm 2 in a CoSO 4 electrolyte. For the first time, Co bottom-up and conformal growth in the damascene trenches with a CD range of 48-130nm can be achieved by electroplating in the Co electrolyte with different additives. The current efficiency, morphology, resistivity, uniformity, reflectivity and the deposition rate of the Co film on the blanket coupons (with Co 150Å) were also determined in this study. 2. Experimental: The plating electrolyte was made of 120g/L CoSO 4 .7H 2 O, 30g/L H 3 BO 3 and 50mg/L Cl - at pH<4. The effect of different additives such as CUPUR CSFX, CUPUR DTX and CUPUR DTK was examined as a function of various concentration. The electrochemical method reported by Broekmann et al [1] was used to characterize the additives. The electrochemical experiment was performed in a three-electrode cell with a Co rod as anode, a standard Ag/AgCl reference electrode and a Pt RDE as cathode. Galvanostatic plating with the current density range of 6-12 mA/cm 2 was used for the Co deposition. 3. Results and Discussion: 3.1 Polarisation/depolarisation behaviours of the additives Figure 1 shows the electrochemical transient curve of the Co electrolyte and additives. The cathodic overpotential of the Co electrolyte was increased by dosing CUPUR DTX, indicating a polarisation occurred during the plating process. The cathodic overpotential of the Co electrolyte was gradually decreased by dosing CUPUR CSFX, indicating a depolarisation occurred during the plating process. We also found the effect of [Co 2+ ] and [H 3 BO 3 ] on the polarisation/depolarisation was not obvious, but the depolarisation of CUPUR CSFX was faster by increasing the concentration of [Cl - ]. Figure 1 Electrochemical transient measurement for Co electrolyte, CUPUR DTX and CUPUR CSFX. 3.2 Partial fill results Different Co filling structure can be obtained by adding different additives. Bottom-up Co filling in the 130nm trenches (with Cu seeds) shown in Fig 2(a) was obtained by plating in the Co electrolyte with CUPUR DTX and CUPUR CSFX. Superconformal Co filling shown in Fig 2(b) was obtained by plating in the Co electrolyte with CUPUR DTK and CUPUR CSFX. Figure 2 SEM image of Co partial fill in the 130nm damascene trenches (a) bottom-up filling; (b) superconformal with V-shape filling. Further study will be focused on the Co filling performance in the trenches with Co seed. 4. Reference: P. Broekmann, et al, Electrochimica Acta 56 (2011) 4724. Figure 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
龍龖龘发布了新的文献求助10
1秒前
快乐黑猫完成签到,获得积分10
1秒前
ding应助Bao采纳,获得10
2秒前
严逍遥完成签到,获得积分10
2秒前
3秒前
慕青应助青烟采纳,获得10
3秒前
小辉辉发布了新的文献求助10
4秒前
Ashui发布了新的文献求助10
5秒前
胡维红发布了新的文献求助10
8秒前
平常的忆文关注了科研通微信公众号
9秒前
坚定以筠发布了新的文献求助10
10秒前
zhengzehong完成签到,获得积分10
11秒前
Ying完成签到,获得积分10
12秒前
天天快乐应助等乙天采纳,获得10
12秒前
14秒前
Rondab应助最美夕阳红采纳,获得10
14秒前
小辉辉完成签到,获得积分20
15秒前
量子星尘发布了新的文献求助10
16秒前
归尘发布了新的文献求助10
16秒前
外向半梅发布了新的文献求助10
17秒前
FashionBoy应助You采纳,获得10
17秒前
ll完成签到 ,获得积分10
17秒前
小豆豆应助杭谷波采纳,获得10
17秒前
OK完成签到,获得积分10
18秒前
19秒前
开开开完成签到,获得积分10
19秒前
21秒前
22秒前
隐形曼青应助三岁采纳,获得10
22秒前
坚定以筠完成签到,获得积分10
22秒前
ding应助开开开采纳,获得10
24秒前
LaTeXer应助迷路海蓝采纳,获得50
24秒前
24秒前
24秒前
等乙天发布了新的文献求助10
25秒前
25秒前
胡维红完成签到,获得积分10
27秒前
28秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959309
求助须知:如何正确求助?哪些是违规求助? 3505589
关于积分的说明 11124738
捐赠科研通 3237345
什么是DOI,文献DOI怎么找? 1789116
邀请新用户注册赠送积分活动 871544
科研通“疑难数据库(出版商)”最低求助积分说明 802844