Efficient and robust 3D CT image reconstruction based on total generalized variation regularization using the alternating direction method

正规化(语言学) 全变差去噪 算法 线性化 迭代重建 计算 数学 数学优化 缩小 计算机科学 图像(数学) 人工智能 非线性系统 物理 量子力学
作者
Jianlin Chen,Linyuan Wang,Bin Yan,Hanming Zhang,Genyang Cheng
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:23 (6): 683-699 被引量:9
标识
DOI:10.3233/xst-150521
摘要

Iterative reconstruction algorithms for computed tomography (CT) through total variation regularization based on piecewise constant assumption can produce accurate, robust, and stable results. Nonetheless, this approach is often subject to staircase artefacts and the loss of fine details. To overcome these shortcomings, we introduce a family of novel image regularization penalties called total generalized variation (TGV) for the effective production of high-quality images from incomplete or noisy projection data for 3D reconstruction. We propose a new, fast alternating direction minimization algorithm to solve CT image reconstruction problems through TGV regularization. Based on the theory of sparse-view image reconstruction and the framework of augmented Lagrange function method, the TGV regularization term has been introduced in the computed tomography and is transformed into three independent variables of the optimization problem by introducing auxiliary variables. This new algorithm applies a local linearization and proximity technique to make the FFT-based calculation of the analytical solutions in the frequency domain feasible, thereby significantly reducing the complexity of the algorithm. Experiments with various 3D datasets corresponding to incomplete projection data demonstrate the advantage of our proposed algorithm in terms of preserving fine details and overcoming the staircase effect. The computation cost also suggests that the proposed algorithm is applicable to and is effective for CBCT imaging. Theoretical and technical optimization should be investigated carefully in terms of both computation efficiency and high resolution of this algorithm in application-oriented research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智迎天发布了新的文献求助10
1秒前
Ava应助清爽安南采纳,获得10
1秒前
3秒前
12发布了新的文献求助10
4秒前
韩一发布了新的文献求助10
4秒前
霁予发布了新的文献求助10
5秒前
烟花应助自由绿柳采纳,获得10
7秒前
7秒前
8R60d8应助zfd采纳,获得10
8秒前
8秒前
向守卫发布了新的文献求助10
9秒前
宋芽芽u完成签到 ,获得积分10
10秒前
略略略爱发布了新的文献求助10
11秒前
朱孝培完成签到,获得积分10
12秒前
刻苦若冰完成签到,获得积分10
12秒前
Bowingyang发布了新的文献求助10
13秒前
13秒前
清爽安南发布了新的文献求助10
13秒前
小二郎应助小飞飞采纳,获得10
14秒前
14秒前
15秒前
Hello应助csl采纳,获得10
15秒前
Jonathan发布了新的文献求助10
16秒前
Zyyyh完成签到 ,获得积分10
17秒前
17秒前
黄景滨完成签到 ,获得积分10
18秒前
牛马发布了新的文献求助10
18秒前
18秒前
SciGPT应助Bowingyang采纳,获得10
19秒前
zeng完成签到,获得积分10
20秒前
Lucas应助迷人的映雁采纳,获得10
20秒前
研友_8oBxrZ完成签到,获得积分10
21秒前
22秒前
嘻嘻哈哈眼药水完成签到,获得积分10
22秒前
22秒前
慕青应助淘金者1314采纳,获得10
23秒前
medgreat发布了新的文献求助10
23秒前
23秒前
24秒前
感性的俊驰完成签到 ,获得积分10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772881
求助须知:如何正确求助?哪些是违规求助? 3318410
关于积分的说明 10190128
捐赠科研通 3033164
什么是DOI,文献DOI怎么找? 1664202
邀请新用户注册赠送积分活动 796110
科研通“疑难数据库(出版商)”最低求助积分说明 757259