亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dyslipidemia and Kidney Stone Risk

医学 血脂异常 内科学 尿检 泌尿系统 肾结石 肾病科 肾结石病 肥胖
作者
Fábio César Miranda Torricelli,Shubha De,Surafel Gebreselassie,Ina Li,Carl Sarkissian,Manoj Monga
出处
期刊:The Journal of Urology [Lippincott Williams & Wilkins]
卷期号:191 (3): 667-672 被引量:86
标识
DOI:10.1016/j.juro.2013.09.022
摘要

No AccessJournal of UrologyUrological Survey1 Mar 2014Dyslipidemia and Kidney Stone Risk Fabio Cesar Miranda Torricelli, Shubha K. De, Surafel Gebreselassie, Ina Li, Carl Sarkissian, and Manoj Monga Fabio Cesar Miranda TorricelliFabio Cesar Miranda Torricelli Cleveland Clinic, Cleveland, Ohio More articles by this author , Shubha K. DeShubha K. De Cleveland Clinic Foundation, Cleveland Clinic, Cleveland, Ohio More articles by this author , Surafel GebreselassieSurafel Gebreselassie Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio More articles by this author , Ina LiIna Li Cleveland Clinic, Cleveland, Ohio More articles by this author , Carl SarkissianCarl Sarkissian Cleveland Clinic, Cleveland, Ohio More articles by this author , and Manoj MongaManoj Monga Stevan B. Streem Center for Endourology and Stone Disease, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio More articles by this author View All Author Informationhttps://doi.org/10.1016/j.juro.2013.09.022AboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract Purpose: We studied the impact of dyslipidemia on 24-hour urinalysis and stone composition. Materials and Methods: We retrospectively identified patients with nephrolithiasis who underwent 24-hour urinalysis and lipid profile evaluation within 3 months. Patients were divided into groups based on total cholesterol, high density lipoprotein, nonhigh density lipoprotein and triglycerides. The groups were compared based on demographic data, diabetes, hypertension and each component of 24-hour urinalysis and stone composition. Multivariate analysis and linear regression were performed to control for potential confounders, including age, gender, body mass index, diabetes and hypertension. Results: A total of 2,442 patients with a mean age of 51.1 years were included in study. On multivariate analysis patients with high total cholesterol had significantly higher urinary potassium and calcium, those with low high density lipoprotein or high triglycerides had significantly higher urinary sodium, oxalate and uric acid with lower pH, and those with high nonhigh density lipoprotein had higher urinary sodium and uric acid. Regarding stone composition, high total cholesterol and triglycerides were significantly associated with a higher uric acid stone rate (p = 0.006 and <0.001, respectively). Linear regression showed a significant association of nonhigh density lipoprotein with higher urinary sodium (p = 0.011) and uric acid (p <0.001) as well as triglycerides and higher uric acid (p = 0.017), and lower urinary pH (p = 0.005). Conclusions: There is a link between dyslipidemia and kidney stone risk that is independent of other components of metabolic syndrome such as diabetes and obesity. Specific alterations in the patient lipid profiles may portend unique aberrations in urine physicochemistry and stone risk. References 1 : Clinical review. Kidney stones 2012: pathogenesis, diagnosis, and management. J Clin Endocrinol Metab2012; 97: 1847. Google Scholar 2 : Race, ethnicity and urolithiasis: a critical review. Urolithiasis2013; 41: 99. Google Scholar 3 : Kidney stone disease: pathophysiology, investigation and medical treatment. Clin Med2012; 12: 467. Google Scholar 4 : Association between body mass index, lipid profiles, and types of urinary stones. Ren Fail2012; 34: 1140. Google Scholar 5 : Association between metabolic syndrome and the presence of kidney stones in a screened population. Am J Kidney Dis2011; 58: 383. Google Scholar 6 : Renal stone disease and obesity: what is important for urologists and nephrologists?. Ren Fail2012; 34: 1348. Google Scholar 7 : The impact of obesity on urine composition and nephrolithiasis management. J Endourol2013; 27: 379. Google Scholar 8 : Correlation of metabolic syndrome with urinary stone composition. Int J Urol2013; 20: 208. Google Scholar 9 : Effects of intensity of aerobics on body composition and blood lipid profile in obese/overweight females. Int J Prev Med2013; 4: S118. Google Scholar 10 : Association of physical activity and sedentary behavior with biological markers among U.S. pregnant women. J Womens Health (Larchmt)2013; 22: 953. Google Scholar 11 : Objectively measured physical activity, cardiorespiratory fitness and cardiometabolic risk factors in the Health Survey for England. Prev Med2013; 57: 201. Google Scholar 12 : Objectively measured sedentary behavior, physical activity, and plasma lipids in overweight and obese children. Obesity (Silver Spring)2013; 21: 382. Google Scholar 13 : Metabolic syndrome and urinary stone composition: what factors matter most?. Urology2012; 80: 805. Google Scholar 14 : Overweight, insulin resistance and blood pressure (parameters of the metabolic syndrome) in uric acid urolithiasis. Urol Res2012; 40: 171. Google Scholar 15 : Metabolic syndrome and the risk of calcium stones. Nephrol Dial Transplant2012; 27: 3201. Google Scholar 16 : Association of metabolic syndrome traits and severity of kidney stones: results from a nationwide survey on urolithiasis in Japan. Am J Kidney Dis2013; 61: 923. Google Scholar 17 : Metabolic syndrome and urolithiasis. A new concept for the urologist. Prog Urol2008; 18: 828. Google Scholar 18 : Nephrocalcinosis and hyperlipidemia in rats fed a cholesterol- and fat-rich diet: association with hyperoxaluria, altered kidney and bone minerals, and renal tissue phospholipid-calcium interaction. Urol Res2000; 28: 404. Google Scholar 19 : Lifestyle recommendations to reduce the risk of kidney stones. Urol Clin North Am2011; 38: 313. Google Scholar 20 : Physical activity and dietary energy intake are independently associated with incident kidney stones in women: a report from the Women's Health Initiative (WHI). J Urol2013; 189: e28. abstract 67. Abstract, Google Scholar 21 : Dyslipidemia in obesity: mechanisms and potential targets. Nutrients2013; 5: 1218. Google Scholar 22 : Increased risk of urinary stone disease by physical exercise. Southeast Asian J Trop Med Public Health1996; 27: 172. Google Scholar 23 : Divergence between stone composition and urine supersaturation: clinical and laboratory implications. J Urol1999; 161: 1077. Link, Google Scholar 24 : LDL subclass phenotypes and the insulin resistance syndrome in women. Circulation1993; 88: 381. Google Scholar 25 : HDL lipids and insulin resistance. Curr Diab Rep2010; 10: 78. Google Scholar © 2014 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetailsCited byTaguchi K, Okada A, Hamamoto S, Iwatsuki S, Naiki T, Ando R, Mizuno K, Tozawa K, Kohri K and Yasui T (2018) Proinflammatory and Metabolic Changes Facilitate Renal Crystal Deposition in an Obese Mouse Model of Metabolic SyndromeJournal of Urology, VOL. 194, NO. 6, (1787-1796), Online publication date: 1-Dec-2015. Volume 191Issue 3March 2014Page: 667-672 Advertisement Copyright & Permissions© 2014 by American Urological Association Education and Research, Inc.Keywordskidneycholesterolnephrolithiasisdyslipidemiasbody mass indexMetricsAuthor Information Fabio Cesar Miranda Torricelli Cleveland Clinic, Cleveland, Ohio More articles by this author Shubha K. De Cleveland Clinic Foundation, Cleveland Clinic, Cleveland, Ohio More articles by this author Surafel Gebreselassie Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio More articles by this author Ina Li Cleveland Clinic, Cleveland, Ohio More articles by this author Carl Sarkissian Cleveland Clinic, Cleveland, Ohio More articles by this author Manoj Monga Stevan B. Streem Center for Endourology and Stone Disease, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio More articles by this author Expand All Advertisement PDF downloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lsm发布了新的文献求助10
4秒前
7秒前
15秒前
和谐诗双完成签到 ,获得积分10
18秒前
obsidian发布了新的文献求助10
19秒前
19秒前
26秒前
我要读博士完成签到 ,获得积分10
27秒前
卡卡东完成签到 ,获得积分10
28秒前
蛙蛙完成签到,获得积分10
31秒前
威武的元冬完成签到,获得积分20
32秒前
勇敢牛牛完成签到 ,获得积分10
38秒前
泉水丁冬2023完成签到 ,获得积分10
38秒前
glanceofwind完成签到 ,获得积分10
39秒前
Owen应助lsm采纳,获得10
40秒前
学者风范完成签到 ,获得积分10
41秒前
44秒前
46秒前
Eden发布了新的文献求助10
48秒前
49秒前
白一航完成签到,获得积分10
51秒前
53秒前
碳酸芙兰完成签到,获得积分10
58秒前
H_C发布了新的文献求助10
58秒前
1分钟前
marcelo完成签到,获得积分10
1分钟前
所所应助lv采纳,获得10
1分钟前
obsidian完成签到,获得积分10
1分钟前
1分钟前
科研小牛完成签到,获得积分10
1分钟前
1分钟前
andrele发布了新的文献求助30
1分钟前
Cathy发布了新的文献求助200
1分钟前
1分钟前
奥黛丽赫本完成签到,获得积分10
1分钟前
鹿茸与共完成签到,获得积分10
1分钟前
酷波er应助lv采纳,获得10
1分钟前
1分钟前
鹿茸与共发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532077
关于积分的说明 11256227
捐赠科研通 3270933
什么是DOI,文献DOI怎么找? 1805139
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228