可列斯基分解
正定矩阵
协方差矩阵
最小度算法
协方差
基质(化学分析)
趋同(经济学)
应用数学
变量(数学)
数学
收敛速度
数学优化
计算机科学
算法
统计
不完全Cholesky因式分解
数学分析
特征向量
钥匙(锁)
物理
化学
经济
量子力学
经济增长
色谱法
计算机安全
作者
Wenyu Yang,Xiaoning Kang
标识
DOI:10.1080/03610926.2021.1910839
摘要
The modified Cholesky decomposition (MCD) is a powerful and efficient tool for the large covariance matrix estimation, which guarantees the positive definite property of the estimated matrix. However, when implementing the MCD, it requires a pre-knowledge of the variable ordering, which is often unknown before analysis or does not exist for some real data. In this work, we propose a positive definite Cholesky-based estimate for the large banded covariance matrix by recovering the variable ordering before applying the MCD technique. The asymptotically theoretical convergence rate is established under some regularity conditions. The merits of the proposed model is illustrated by simulation study and applications to two gene expression data sets.
科研通智能强力驱动
Strongly Powered by AbleSci AI