Estimation of corn yield based on hyperspectral imagery and convolutional neural network

高光谱成像 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 数学 遥感 计算机视觉 地理
作者
Wei Yang,Tyler J. Nigon,Ziyuan Hao,Gabriel Dias Paiao,Fabián G. Fernández,D. J. Mulla,Ce Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:184: 106092-106092 被引量:114
标识
DOI:10.1016/j.compag.2021.106092
摘要

Corn is an important food crop in the world, widely distributed in many countries because of its excellent environmental adaptability. Moreover, corn is an important feed source for animal production and it is an indispensable raw material for many different industries. With increasing human population and decreasing arable land, there is an increased focus on increasing yield of corn. Convolutional neural network (CNN) analysis can be used for non-destructive yield prediction and is well suited for classification and feature extraction. The overall objective of this experiment was to use hyperspectral imagery to train a CNN classification model to estimate corn grain yield. High resolution hyperspectral imagery was captured at five corn growth stages - V5 (five leaves with visible leaf collars), V8 (eight leaves with visible leaf collars), V10 (ten leaves with visible leaf collars), V12 (12 leaves with visible leaf collars), and R2 (blister stage). Hyperspectral imagery was denoised using the wavelet analysis method, then was used to train and validate the CNN model. The spectral information reflecting the internal characteristics and the spatial information provided by the color image (red, green and blue bands extracted from hyperspectral image) reflecting the external characteristics of corn growth are extracted for modelling and verification. The results show that the spectral and color image-based integrated CNN model has a classification accuracy of 75.50%. In contrast, the accuracy of a one-dimensional CNN model based only on spectral information or a two-dimensional CNN model based only on color image information were 60.39% and 32.17%, respectively. The integrated CNN model (spectral information plus color image information) is better than results of the individual one-dimensional CNN or two-dimensional CNN models. In addition. The Kappa coefficient of integrated CNN model is 0.69, which indicates a high consistency of classification. Comprehensive use of spectral information and color image information, which represent information about the inner and outer corn canopy can provide more accurate corn yield prediction than one-dimensional or two-dimensional CNN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LiuHD发布了新的文献求助10
3秒前
EgbertW完成签到,获得积分10
3秒前
理想国的过客完成签到,获得积分10
4秒前
小苏发布了新的文献求助10
4秒前
星熠完成签到,获得积分10
6秒前
7秒前
hhhhhhhhhh完成签到 ,获得积分10
8秒前
潇潇完成签到,获得积分10
9秒前
LiuHD完成签到,获得积分10
10秒前
滴滴如玉完成签到,获得积分10
10秒前
flysky120发布了新的文献求助30
10秒前
本是个江湖散人完成签到,获得积分10
12秒前
zxg发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
ceeray23应助温暖的颜演采纳,获得10
13秒前
13秒前
FashionBoy应助做梦采纳,获得10
13秒前
尊敬的花卷完成签到 ,获得积分10
14秒前
zw完成签到 ,获得积分10
14秒前
吕凯良发布了新的文献求助10
15秒前
nenoaowu发布了新的文献求助10
15秒前
石头完成签到 ,获得积分10
17秒前
小冯完成签到 ,获得积分10
17秒前
懵懂的忻发布了新的文献求助20
18秒前
19秒前
YJH发布了新的文献求助10
20秒前
nenoaowu完成签到,获得积分10
20秒前
20秒前
momo102610完成签到,获得积分10
21秒前
壮观的海豚完成签到 ,获得积分10
22秒前
二十而耳顺完成签到,获得积分10
22秒前
大气的尔蓝完成签到,获得积分10
23秒前
乐乐应助小苏采纳,获得10
24秒前
呆呆发布了新的文献求助10
24秒前
Antonio完成签到,获得积分10
25秒前
zhaoshao完成签到,获得积分10
25秒前
胖胖胖胖完成签到,获得积分10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565327
求助须知:如何正确求助?哪些是违规求助? 4650317
关于积分的说明 14690672
捐赠科研通 4592233
什么是DOI,文献DOI怎么找? 2519494
邀请新用户注册赠送积分活动 1491964
关于科研通互助平台的介绍 1463183