Estimation of corn yield based on hyperspectral imagery and convolutional neural network

高光谱成像 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 数学 遥感 计算机视觉 地理
作者
Wei Yang,Tyler J. Nigon,Ziyuan Hao,Gabriel Dias Paiao,Fabián G. Fernández,D. J. Mulla,Ce Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:184: 106092-106092 被引量:85
标识
DOI:10.1016/j.compag.2021.106092
摘要

Corn is an important food crop in the world, widely distributed in many countries because of its excellent environmental adaptability. Moreover, corn is an important feed source for animal production and it is an indispensable raw material for many different industries. With increasing human population and decreasing arable land, there is an increased focus on increasing yield of corn. Convolutional neural network (CNN) analysis can be used for non-destructive yield prediction and is well suited for classification and feature extraction. The overall objective of this experiment was to use hyperspectral imagery to train a CNN classification model to estimate corn grain yield. High resolution hyperspectral imagery was captured at five corn growth stages - V5 (five leaves with visible leaf collars), V8 (eight leaves with visible leaf collars), V10 (ten leaves with visible leaf collars), V12 (12 leaves with visible leaf collars), and R2 (blister stage). Hyperspectral imagery was denoised using the wavelet analysis method, then was used to train and validate the CNN model. The spectral information reflecting the internal characteristics and the spatial information provided by the color image (red, green and blue bands extracted from hyperspectral image) reflecting the external characteristics of corn growth are extracted for modelling and verification. The results show that the spectral and color image-based integrated CNN model has a classification accuracy of 75.50%. In contrast, the accuracy of a one-dimensional CNN model based only on spectral information or a two-dimensional CNN model based only on color image information were 60.39% and 32.17%, respectively. The integrated CNN model (spectral information plus color image information) is better than results of the individual one-dimensional CNN or two-dimensional CNN models. In addition. The Kappa coefficient of integrated CNN model is 0.69, which indicates a high consistency of classification. Comprehensive use of spectral information and color image information, which represent information about the inner and outer corn canopy can provide more accurate corn yield prediction than one-dimensional or two-dimensional CNN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助梓榆采纳,获得10
刚刚
林夕完成签到 ,获得积分10
刚刚
无冕之王发布了新的文献求助10
刚刚
刚刚
刚刚
无语的凡梦完成签到,获得积分10
1秒前
3秒前
Yoisun发布了新的文献求助10
3秒前
司马飞飞发布了新的文献求助10
3秒前
3秒前
4秒前
王炎完成签到 ,获得积分10
4秒前
5秒前
sxy完成签到,获得积分10
5秒前
不敢装睡发布了新的文献求助10
5秒前
6秒前
7秒前
挺喜欢你发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
笑笑完成签到,获得积分10
9秒前
酷波er应助dablack采纳,获得30
9秒前
夏兴龙发布了新的文献求助10
10秒前
充电宝应助活泼一斩采纳,获得10
11秒前
heyan完成签到,获得积分10
11秒前
嗯哼完成签到 ,获得积分10
12秒前
梓榆发布了新的文献求助10
13秒前
纸鸢发布了新的文献求助150
13秒前
小盘子发布了新的文献求助10
13秒前
隐形曼青应助挺喜欢你采纳,获得10
13秒前
和谐犀牛发布了新的文献求助10
14秒前
阿郎发布了新的文献求助10
15秒前
高一发布了新的文献求助10
15秒前
16秒前
酒石酸美托洛尔i完成签到,获得积分10
17秒前
孙小雨完成签到,获得积分20
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479351
求助须知:如何正确求助?哪些是违规求助? 3070006
关于积分的说明 9116371
捐赠科研通 2761742
什么是DOI,文献DOI怎么找? 1515526
邀请新用户注册赠送积分活动 700958
科研通“疑难数据库(出版商)”最低求助积分说明 699951