亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimation of corn yield based on hyperspectral imagery and convolutional neural network

高光谱成像 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 数学 遥感 计算机视觉 地理
作者
Wei Yang,Tyler J. Nigon,Ziyuan Hao,Gabriel Dias Paiao,Fabián G. Fernández,D. J. Mulla,Ce Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:184: 106092-106092 被引量:114
标识
DOI:10.1016/j.compag.2021.106092
摘要

Corn is an important food crop in the world, widely distributed in many countries because of its excellent environmental adaptability. Moreover, corn is an important feed source for animal production and it is an indispensable raw material for many different industries. With increasing human population and decreasing arable land, there is an increased focus on increasing yield of corn. Convolutional neural network (CNN) analysis can be used for non-destructive yield prediction and is well suited for classification and feature extraction. The overall objective of this experiment was to use hyperspectral imagery to train a CNN classification model to estimate corn grain yield. High resolution hyperspectral imagery was captured at five corn growth stages - V5 (five leaves with visible leaf collars), V8 (eight leaves with visible leaf collars), V10 (ten leaves with visible leaf collars), V12 (12 leaves with visible leaf collars), and R2 (blister stage). Hyperspectral imagery was denoised using the wavelet analysis method, then was used to train and validate the CNN model. The spectral information reflecting the internal characteristics and the spatial information provided by the color image (red, green and blue bands extracted from hyperspectral image) reflecting the external characteristics of corn growth are extracted for modelling and verification. The results show that the spectral and color image-based integrated CNN model has a classification accuracy of 75.50%. In contrast, the accuracy of a one-dimensional CNN model based only on spectral information or a two-dimensional CNN model based only on color image information were 60.39% and 32.17%, respectively. The integrated CNN model (spectral information plus color image information) is better than results of the individual one-dimensional CNN or two-dimensional CNN models. In addition. The Kappa coefficient of integrated CNN model is 0.69, which indicates a high consistency of classification. Comprehensive use of spectral information and color image information, which represent information about the inner and outer corn canopy can provide more accurate corn yield prediction than one-dimensional or two-dimensional CNN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
mdomse2109完成签到,获得积分10
2秒前
Aimeee发布了新的文献求助10
3秒前
天天快乐应助tdtk采纳,获得10
5秒前
mdomse2109发布了新的文献求助10
7秒前
李雅琳完成签到 ,获得积分10
10秒前
上官若男应助qlh采纳,获得10
10秒前
开放素完成签到 ,获得积分0
14秒前
WuFen完成签到 ,获得积分10
18秒前
27秒前
29秒前
傅家庆完成签到 ,获得积分10
31秒前
35秒前
shaylie完成签到 ,获得积分10
36秒前
Owen应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
浮浮世世应助科研通管家采纳,获得30
44秒前
浮游应助科研通管家采纳,获得10
44秒前
Owen应助科研通管家采纳,获得10
44秒前
47秒前
ilk666完成签到,获得积分10
49秒前
1997SD完成签到,获得积分10
51秒前
ding应助伶俐的高烽采纳,获得10
53秒前
dolabmu完成签到 ,获得积分10
55秒前
58秒前
59秒前
Dr.YYF.发布了新的文献求助10
1分钟前
CipherSage应助Zylan采纳,获得10
1分钟前
HD发布了新的文献求助10
1分钟前
1997SD发布了新的文献求助10
1分钟前
1分钟前
tdtk发布了新的文献求助10
1分钟前
昆工完成签到 ,获得积分10
1分钟前
1分钟前
Lau发布了新的文献求助10
1分钟前
yzy完成签到 ,获得积分10
1分钟前
Dr.YYF.完成签到,获得积分10
1分钟前
HD完成签到,获得积分10
1分钟前
William_l_c完成签到,获得积分10
1分钟前
Zilch驳回了cbj应助
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493698
求助须知:如何正确求助?哪些是违规求助? 4591739
关于积分的说明 14434492
捐赠科研通 4524114
什么是DOI,文献DOI怎么找? 2478624
邀请新用户注册赠送积分活动 1463650
关于科研通互助平台的介绍 1436456