Estimation of corn yield based on hyperspectral imagery and convolutional neural network

高光谱成像 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 数学 遥感 计算机视觉 地理
作者
Wei Yang,Tyler J. Nigon,Ziyuan Hao,Gabriel Dias Paiao,Fabián G. Fernández,D. J. Mulla,Ce Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:184: 106092-106092 被引量:114
标识
DOI:10.1016/j.compag.2021.106092
摘要

Corn is an important food crop in the world, widely distributed in many countries because of its excellent environmental adaptability. Moreover, corn is an important feed source for animal production and it is an indispensable raw material for many different industries. With increasing human population and decreasing arable land, there is an increased focus on increasing yield of corn. Convolutional neural network (CNN) analysis can be used for non-destructive yield prediction and is well suited for classification and feature extraction. The overall objective of this experiment was to use hyperspectral imagery to train a CNN classification model to estimate corn grain yield. High resolution hyperspectral imagery was captured at five corn growth stages - V5 (five leaves with visible leaf collars), V8 (eight leaves with visible leaf collars), V10 (ten leaves with visible leaf collars), V12 (12 leaves with visible leaf collars), and R2 (blister stage). Hyperspectral imagery was denoised using the wavelet analysis method, then was used to train and validate the CNN model. The spectral information reflecting the internal characteristics and the spatial information provided by the color image (red, green and blue bands extracted from hyperspectral image) reflecting the external characteristics of corn growth are extracted for modelling and verification. The results show that the spectral and color image-based integrated CNN model has a classification accuracy of 75.50%. In contrast, the accuracy of a one-dimensional CNN model based only on spectral information or a two-dimensional CNN model based only on color image information were 60.39% and 32.17%, respectively. The integrated CNN model (spectral information plus color image information) is better than results of the individual one-dimensional CNN or two-dimensional CNN models. In addition. The Kappa coefficient of integrated CNN model is 0.69, which indicates a high consistency of classification. Comprehensive use of spectral information and color image information, which represent information about the inner and outer corn canopy can provide more accurate corn yield prediction than one-dimensional or two-dimensional CNN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
宋宋完成签到 ,获得积分10
刚刚
欣欣完成签到,获得积分10
刚刚
渔渔发布了新的文献求助10
1秒前
ding应助小金采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
mz完成签到 ,获得积分10
1秒前
2秒前
SciGPT应助从容的水壶采纳,获得10
2秒前
suliuyin发布了新的文献求助10
2秒前
屹舟完成签到 ,获得积分10
2秒前
HuiJN完成签到 ,获得积分10
3秒前
yiliu完成签到,获得积分10
3秒前
123完成签到,获得积分10
3秒前
FashionBoy应助RONG采纳,获得10
3秒前
3秒前
kekong完成签到,获得积分10
4秒前
dg_fisher发布了新的文献求助20
4秒前
4秒前
4秒前
kumarr完成签到,获得积分10
6秒前
青山发布了新的文献求助10
6秒前
马大帅完成签到,获得积分10
6秒前
州神发布了新的文献求助10
7秒前
NexusExplorer应助WX2023采纳,获得20
7秒前
1122完成签到,获得积分10
7秒前
1900发布了新的文献求助10
8秒前
LG关闭了LG文献求助
8秒前
9秒前
陈龙发布了新的文献求助10
9秒前
Auralis完成签到 ,获得积分10
10秒前
开心叫兽完成签到,获得积分20
10秒前
楚子关发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
思源应助hhxx采纳,获得10
12秒前
momo完成签到 ,获得积分10
13秒前
一一完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741647
求助须知:如何正确求助?哪些是违规求助? 5403409
关于积分的说明 15343085
捐赠科研通 4883236
什么是DOI,文献DOI怎么找? 2624979
邀请新用户注册赠送积分活动 1573765
关于科研通互助平台的介绍 1530709