What Will Be Popular Next? Predicting Hotspots in Two-Mode Social Networks

社交网络(社会语言学) 社会学习 社会启发式 计算机科学 操作化 社会计算 过程(计算) 相互依存 社会关系 知识管理 社会能力 社会化媒体 社会变革 万维网 社会心理学 心理学 社会学 经济 经济增长 社会科学 认识论 操作系统 哲学
作者
Zhepeng Li,Yong Ge,Xue Bai
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
卷期号:45 (2): 925-966 被引量:6
标识
DOI:10.25300/misq/2021/15365
摘要

In social networks, social foci are physical or virtual entities around which social individuals organize joint activities, for example, places and products (physical form) or opinions and services (virtual form). Forecasting which social foci will diffuse to more social individuals is important for managerial functions such as marketing and public management operations. In terms of diffusive social adoptions, prior studies on user adoptive behavior in social networks have focused on single-item adoption in homogeneous networks. We advance this body of research by modeling scenarios with multi-item adoption and learning the relative propagation of social foci in concurrent social diffusions for online social networking platforms. In particular, we distinguish two types of social nodes in our two-mode social network model: social foci and social actors. Based on social network theories, we identify and operationalize factors that drive social adoption within the two-mode social network. We also capture the interdependencies between social actors and social foci using a bilateral recursive process—specifically, a mutual reinforcement process that converges to an analytical form. Thus, we develop a gradient learning method based on a mutual reinforcement process that targets the optimal parameter configuration for pairwise ranking of social diffusions. Further, we demonstrate analytical properties of the proposed method such as guaranteed convergence and the convergence rate. In the evaluation, we benchmark the proposed method against prevalent methods, and we demonstrate its superior performance using three real-world data sets that cover the adoption of both physical and virtual entities in online social networking platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奔波霸完成签到 ,获得积分10
1秒前
万能图书馆应助wuke采纳,获得10
2秒前
2秒前
夜雨清痕y发布了新的文献求助10
3秒前
正直猫咪完成签到,获得积分20
4秒前
fangyuan应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
慕青应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
6秒前
fangyuan应助科研通管家采纳,获得10
6秒前
pluto应助读书的时候采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
6秒前
情怀应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
烟花应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
脑洞疼应助Shawn采纳,获得10
7秒前
z182052237完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
思柔完成签到,获得积分10
10秒前
张先生发布了新的文献求助10
10秒前
10秒前
英俊的铭应助花凉采纳,获得10
13秒前
choaiho完成签到 ,获得积分10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693788
求助须知:如何正确求助?哪些是违规求助? 5094331
关于积分的说明 15212383
捐赠科研通 4850595
什么是DOI,文献DOI怎么找? 2601854
邀请新用户注册赠送积分活动 1553652
关于科研通互助平台的介绍 1511661