亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

What Will Be Popular Next? Predicting Hotspots in Two-Mode Social Networks

社交网络(社会语言学) 社会学习 社会启发式 计算机科学 操作化 社会计算 过程(计算) 相互依存 社会关系 知识管理 社会能力 社会化媒体 社会变革 万维网 社会心理学 心理学 社会学 经济 经济增长 社会科学 认识论 操作系统 哲学
作者
Zhepeng Li,Yong Ge,Xue Bai
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
卷期号:45 (2): 925-966 被引量:6
标识
DOI:10.25300/misq/2021/15365
摘要

In social networks, social foci are physical or virtual entities around which social individuals organize joint activities, for example, places and products (physical form) or opinions and services (virtual form). Forecasting which social foci will diffuse to more social individuals is important for managerial functions such as marketing and public management operations. In terms of diffusive social adoptions, prior studies on user adoptive behavior in social networks have focused on single-item adoption in homogeneous networks. We advance this body of research by modeling scenarios with multi-item adoption and learning the relative propagation of social foci in concurrent social diffusions for online social networking platforms. In particular, we distinguish two types of social nodes in our two-mode social network model: social foci and social actors. Based on social network theories, we identify and operationalize factors that drive social adoption within the two-mode social network. We also capture the interdependencies between social actors and social foci using a bilateral recursive process—specifically, a mutual reinforcement process that converges to an analytical form. Thus, we develop a gradient learning method based on a mutual reinforcement process that targets the optimal parameter configuration for pairwise ranking of social diffusions. Further, we demonstrate analytical properties of the proposed method such as guaranteed convergence and the convergence rate. In the evaluation, we benchmark the proposed method against prevalent methods, and we demonstrate its superior performance using three real-world data sets that cover the adoption of both physical and virtual entities in online social networking platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助嘻嘻哈哈采纳,获得90
6秒前
BowieHuang应助嘻嘻哈哈采纳,获得90
6秒前
BowieHuang应助嘻嘻哈哈采纳,获得90
6秒前
BowieHuang应助嘻嘻哈哈采纳,获得80
6秒前
汉堡包应助典雅的俊驰采纳,获得10
7秒前
21秒前
caca完成签到,获得积分0
21秒前
鹭江发布了新的文献求助10
27秒前
嘻嘻哈哈发布了新的文献求助80
28秒前
种下梧桐树完成签到 ,获得积分10
31秒前
33秒前
39秒前
40秒前
cool_随风发布了新的文献求助10
45秒前
50秒前
50秒前
moon发布了新的文献求助10
53秒前
Criminology34应助cool_随风采纳,获得10
1分钟前
moon完成签到,获得积分10
1分钟前
鹭江完成签到,获得积分10
1分钟前
嘟嘟哒完成签到,获得积分10
1分钟前
1分钟前
1分钟前
忘忧Aquarius完成签到,获得积分10
1分钟前
mammer完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
笔墨纸砚完成签到 ,获得积分10
1分钟前
嘻嘻哈哈发布了新的文献求助90
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
嘻嘻哈哈应助舒服的觅夏采纳,获得10
2分钟前
zzzzzzz发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254321
求助须知:如何正确求助?哪些是违规求助? 4417277
关于积分的说明 13751164
捐赠科研通 4289914
什么是DOI,文献DOI怎么找? 2353881
邀请新用户注册赠送积分活动 1350523
关于科研通互助平台的介绍 1310666