What Will Be Popular Next? Predicting Hotspots in Two-Mode Social Networks

社交网络(社会语言学) 社会学习 社会启发式 计算机科学 操作化 社会计算 过程(计算) 相互依存 社会关系 知识管理 社会能力 社会化媒体 社会变革 万维网 社会心理学 心理学 社会学 经济 经济增长 社会科学 认识论 操作系统 哲学
作者
Zhepeng Li,Yong Ge,Xue Bai
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
卷期号:45 (2): 925-966 被引量:6
标识
DOI:10.25300/misq/2021/15365
摘要

In social networks, social foci are physical or virtual entities around which social individuals organize joint activities, for example, places and products (physical form) or opinions and services (virtual form). Forecasting which social foci will diffuse to more social individuals is important for managerial functions such as marketing and public management operations. In terms of diffusive social adoptions, prior studies on user adoptive behavior in social networks have focused on single-item adoption in homogeneous networks. We advance this body of research by modeling scenarios with multi-item adoption and learning the relative propagation of social foci in concurrent social diffusions for online social networking platforms. In particular, we distinguish two types of social nodes in our two-mode social network model: social foci and social actors. Based on social network theories, we identify and operationalize factors that drive social adoption within the two-mode social network. We also capture the interdependencies between social actors and social foci using a bilateral recursive process—specifically, a mutual reinforcement process that converges to an analytical form. Thus, we develop a gradient learning method based on a mutual reinforcement process that targets the optimal parameter configuration for pairwise ranking of social diffusions. Further, we demonstrate analytical properties of the proposed method such as guaranteed convergence and the convergence rate. In the evaluation, we benchmark the proposed method against prevalent methods, and we demonstrate its superior performance using three real-world data sets that cover the adoption of both physical and virtual entities in online social networking platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxx完成签到,获得积分10
刚刚
wxxx发布了新的文献求助10
刚刚
张伟发布了新的文献求助10
1秒前
SciGPT应助背后孤晴采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
bkagyin应助叶95采纳,获得10
6秒前
饱满的小懒猪完成签到,获得积分20
6秒前
赘婿应助Sunshine采纳,获得10
7秒前
英姑应助凸迩丝儿采纳,获得10
8秒前
8秒前
所所应助CL采纳,获得10
8秒前
LWJ完成签到 ,获得积分10
8秒前
壮观百招完成签到 ,获得积分10
9秒前
9秒前
米兰发布了新的文献求助50
10秒前
善学以致用应助YAOCHUHUO采纳,获得10
10秒前
li发布了新的文献求助10
10秒前
FashionBoy应助中午吃什么采纳,获得10
10秒前
chHe发布了新的文献求助10
11秒前
哈哈发布了新的文献求助10
11秒前
12秒前
今后应助阿迪采纳,获得10
12秒前
烦恼的寂寞完成签到,获得积分10
12秒前
希望天下0贩的0应助feiten采纳,获得10
13秒前
房谷槐发布了新的文献求助10
13秒前
13秒前
14秒前
人言不足畏完成签到,获得积分10
15秒前
西柚柠檬完成签到 ,获得积分10
15秒前
CodeCraft应助小谢同学采纳,获得10
15秒前
15秒前
zjh完成签到,获得积分10
16秒前
16秒前
多情忆彤完成签到,获得积分10
17秒前
19秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233742
求助须知:如何正确求助?哪些是违规求助? 2880231
关于积分的说明 8214458
捐赠科研通 2547669
什么是DOI,文献DOI怎么找? 1377140
科研通“疑难数据库(出版商)”最低求助积分说明 647736
邀请新用户注册赠送积分活动 623187