What Will Be Popular Next? Predicting Hotspots in Two-Mode Social Networks

社交网络(社会语言学) 社会学习 社会启发式 计算机科学 操作化 社会计算 过程(计算) 相互依存 社会关系 知识管理 社会能力 社会化媒体 社会变革 万维网 社会心理学 心理学 社会学 经济 经济增长 社会科学 认识论 操作系统 哲学
作者
Zhepeng Li,Yong Ge,Xue Bai
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
卷期号:45 (2): 925-966 被引量:6
标识
DOI:10.25300/misq/2021/15365
摘要

In social networks, social foci are physical or virtual entities around which social individuals organize joint activities, for example, places and products (physical form) or opinions and services (virtual form). Forecasting which social foci will diffuse to more social individuals is important for managerial functions such as marketing and public management operations. In terms of diffusive social adoptions, prior studies on user adoptive behavior in social networks have focused on single-item adoption in homogeneous networks. We advance this body of research by modeling scenarios with multi-item adoption and learning the relative propagation of social foci in concurrent social diffusions for online social networking platforms. In particular, we distinguish two types of social nodes in our two-mode social network model: social foci and social actors. Based on social network theories, we identify and operationalize factors that drive social adoption within the two-mode social network. We also capture the interdependencies between social actors and social foci using a bilateral recursive process—specifically, a mutual reinforcement process that converges to an analytical form. Thus, we develop a gradient learning method based on a mutual reinforcement process that targets the optimal parameter configuration for pairwise ranking of social diffusions. Further, we demonstrate analytical properties of the proposed method such as guaranteed convergence and the convergence rate. In the evaluation, we benchmark the proposed method against prevalent methods, and we demonstrate its superior performance using three real-world data sets that cover the adoption of both physical and virtual entities in online social networking platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaobai123456发布了新的文献求助10
刚刚
Eurpides完成签到 ,获得积分10
刚刚
慕青应助科研通管家采纳,获得10
1秒前
529发布了新的文献求助10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
iNk应助科研通管家采纳,获得10
1秒前
1秒前
iNk应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
香蕉诗蕊应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
英姑应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
柠檬完成签到 ,获得积分10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
高帮白袜完成签到,获得积分10
2秒前
万能图书馆应助科研通管家采纳,获得100
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
wwwwwnnnnn完成签到,获得积分10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
666666666666666完成签到 ,获得积分10
2秒前
ding应助科研通管家采纳,获得10
2秒前
延陵君应助科研通管家采纳,获得30
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600235
求助须知:如何正确求助?哪些是违规求助? 4685911
关于积分的说明 14840612
捐赠科研通 4675789
什么是DOI,文献DOI怎么找? 2538581
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471162