清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Learnable low-rank latent dictionary for subspace clustering

聚类分析 子空间拓扑 计算机科学 模式识别(心理学) 秩(图论) 人工智能 投影(关系代数) 高维数据聚类 数据点 数学 算法 组合数学
作者
Yesong Xu,Shuo Chen,Jun Li,Lei Luo,Jian Yang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:120: 108142-108142 被引量:11
标识
DOI:10.1016/j.patcog.2021.108142
摘要

Recently, Self-Expressive-based Subspace Clustering (SESC) has been widely applied in pattern clustering and machine learning as it aims to learn a representation that can faithfully reflect the correlation between data points. However, most existing SESC methods directly use the original data as the dictionary, which miss the intrinsic structure (e.g., low-rank and nonlinear) of the real-word data. To address this problem, we propose a novel Projection Low-Rank Subspace Clustering (PLRSC) method by integrating feature extraction and subspace clustering into a unified framework. In particular, PLRSC learns a projection transformation to extract the low-dimensional features and utilizes a low-rank regularizer to ensure the informative and important structures of the extracted features. The extracted low-rank features effectively enhance the self-expressive property of the dictionary. Furthermore, we extend PLRSC to a nonlinear version (i.e., NPLRSC) by integrating a nonlinear activator into the projection transformation. NPLRSC cannot only effectively extract features but also guarantee the data structure of the extracted features. The corresponding optimization problem is solved by the Alternating Direction Method (ADM), and we also prove that the algorithm converges to a stationary point. Experimental results on the real-world datasets validate the superior of our model over the existing subspace clustering methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十分十分佳完成签到,获得积分10
6秒前
浮游应助LeezZZZ采纳,获得10
8秒前
俊逸的盛男完成签到 ,获得积分10
26秒前
吴静完成签到 ,获得积分10
58秒前
灯光师完成签到,获得积分10
1分钟前
widesky777完成签到 ,获得积分0
1分钟前
大雁完成签到 ,获得积分10
1分钟前
科研通AI5应助灯光师采纳,获得10
1分钟前
zyjsunye完成签到 ,获得积分10
1分钟前
1分钟前
加油发布了新的文献求助10
1分钟前
大胆面包完成签到 ,获得积分10
1分钟前
完美世界应助加油采纳,获得10
1分钟前
1分钟前
Yoanna应助科研通管家采纳,获得30
1分钟前
1分钟前
闹心发布了新的文献求助10
1分钟前
彭晓雅发布了新的文献求助80
2分钟前
一个小胖子完成签到,获得积分10
2分钟前
Akim应助一个小胖子采纳,获得10
2分钟前
斯文败类应助LeezZZZ采纳,获得10
2分钟前
zijingsy完成签到 ,获得积分10
2分钟前
cgs完成签到 ,获得积分10
2分钟前
2分钟前
西安浴日光能赵炜完成签到,获得积分10
2分钟前
李铃锐完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
鹏哥爱科研完成签到,获得积分20
3分钟前
灯光师发布了新的文献求助10
3分钟前
roger完成签到 ,获得积分10
3分钟前
王波完成签到 ,获得积分10
3分钟前
3分钟前
晚风发布了新的文献求助10
3分钟前
Yoanna应助科研通管家采纳,获得30
3分钟前
Yoanna应助科研通管家采纳,获得30
3分钟前
万能图书馆应助晚风采纳,获得10
3分钟前
Jayzie完成签到 ,获得积分10
4分钟前
赵李锋完成签到,获得积分10
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5149474
求助须知:如何正确求助?哪些是违规求助? 4345460
关于积分的说明 13530498
捐赠科研通 4187811
什么是DOI,文献DOI怎么找? 2296482
邀请新用户注册赠送积分活动 1296860
关于科研通互助平台的介绍 1241187