Learnable low-rank latent dictionary for subspace clustering

聚类分析 子空间拓扑 计算机科学 模式识别(心理学) 秩(图论) 人工智能 投影(关系代数) 高维数据聚类 数据点 数学 算法 组合数学
作者
Yesong Xu,Shuo Chen,Jun Li,Lei Luo,Jian Yang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:120: 108142-108142 被引量:11
标识
DOI:10.1016/j.patcog.2021.108142
摘要

Recently, Self-Expressive-based Subspace Clustering (SESC) has been widely applied in pattern clustering and machine learning as it aims to learn a representation that can faithfully reflect the correlation between data points. However, most existing SESC methods directly use the original data as the dictionary, which miss the intrinsic structure (e.g., low-rank and nonlinear) of the real-word data. To address this problem, we propose a novel Projection Low-Rank Subspace Clustering (PLRSC) method by integrating feature extraction and subspace clustering into a unified framework. In particular, PLRSC learns a projection transformation to extract the low-dimensional features and utilizes a low-rank regularizer to ensure the informative and important structures of the extracted features. The extracted low-rank features effectively enhance the self-expressive property of the dictionary. Furthermore, we extend PLRSC to a nonlinear version (i.e., NPLRSC) by integrating a nonlinear activator into the projection transformation. NPLRSC cannot only effectively extract features but also guarantee the data structure of the extracted features. The corresponding optimization problem is solved by the Alternating Direction Method (ADM), and we also prove that the algorithm converges to a stationary point. Experimental results on the real-world datasets validate the superior of our model over the existing subspace clustering methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
budingman发布了新的文献求助20
1秒前
天天快乐应助笑点低涵雁采纳,获得10
2秒前
2秒前
迷人世开完成签到,获得积分0
3秒前
3秒前
4秒前
5秒前
5秒前
栗子发布了新的文献求助10
6秒前
6秒前
7秒前
涵泽发布了新的文献求助10
10秒前
11秒前
66发布了新的文献求助10
11秒前
baibai完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
HaohaoLi完成签到,获得积分10
15秒前
15秒前
16秒前
小蘑菇应助Zeming_Pan采纳,获得10
16秒前
Hetuiiiii完成签到,获得积分20
17秒前
18秒前
19秒前
19秒前
21秒前
22秒前
张冰驰发布了新的文献求助10
23秒前
23秒前
Hetuiiiii发布了新的文献求助10
23秒前
mensa完成签到,获得积分10
24秒前
披荆斩棘完成签到,获得积分10
24秒前
PAD驳回了Owen应助
25秒前
25秒前
稀奇发布了新的文献求助10
26秒前
诚心以冬完成签到,获得积分10
27秒前
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962205
求助须知:如何正确求助?哪些是违规求助? 3508430
关于积分的说明 11140874
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382