Learnable low-rank latent dictionary for subspace clustering

聚类分析 子空间拓扑 计算机科学 模式识别(心理学) 秩(图论) 人工智能 投影(关系代数) 高维数据聚类 数据点 数学 算法 组合数学
作者
Yesong Xu,Shuo Chen,Jun Li,Lei Luo,Jian Yang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:120: 108142-108142 被引量:11
标识
DOI:10.1016/j.patcog.2021.108142
摘要

Recently, Self-Expressive-based Subspace Clustering (SESC) has been widely applied in pattern clustering and machine learning as it aims to learn a representation that can faithfully reflect the correlation between data points. However, most existing SESC methods directly use the original data as the dictionary, which miss the intrinsic structure (e.g., low-rank and nonlinear) of the real-word data. To address this problem, we propose a novel Projection Low-Rank Subspace Clustering (PLRSC) method by integrating feature extraction and subspace clustering into a unified framework. In particular, PLRSC learns a projection transformation to extract the low-dimensional features and utilizes a low-rank regularizer to ensure the informative and important structures of the extracted features. The extracted low-rank features effectively enhance the self-expressive property of the dictionary. Furthermore, we extend PLRSC to a nonlinear version (i.e., NPLRSC) by integrating a nonlinear activator into the projection transformation. NPLRSC cannot only effectively extract features but also guarantee the data structure of the extracted features. The corresponding optimization problem is solved by the Alternating Direction Method (ADM), and we also prove that the algorithm converges to a stationary point. Experimental results on the real-world datasets validate the superior of our model over the existing subspace clustering methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwt发布了新的文献求助10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
zho应助科研通管家采纳,获得10
1秒前
weishen应助科研通管家采纳,获得10
1秒前
buno应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
大脸怪完成签到,获得积分20
2秒前
萧水白应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
LLY应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
Yziii应助科研通管家采纳,获得30
2秒前
3秒前
3秒前
3秒前
3秒前
乐乐应助gdh采纳,获得10
3秒前
jack完成签到,获得积分10
4秒前
傲慢与偏见zz应助小何采纳,获得10
4秒前
梅杰完成签到,获得积分10
6秒前
7秒前
ding应助无情的宛儿采纳,获得10
7秒前
妞妞完成签到,获得积分10
7秒前
慕青应助洞悉采纳,获得10
7秒前
8秒前
葵葵完成签到,获得积分10
9秒前
wwt关闭了wwt文献求助
9秒前
接心软审稿人完成签到 ,获得积分10
9秒前
10秒前
落水者发布了新的文献求助10
12秒前
蜡笔小新完成签到,获得积分10
12秒前
14秒前
我是老大应助余华的莫言采纳,获得10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243037
求助须知:如何正确求助?哪些是违规求助? 2887097
关于积分的说明 8246502
捐赠科研通 2555694
什么是DOI,文献DOI怎么找? 1383806
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625631