Fabric defect detection based on multi-source feature fusion

稳健性(进化) 计算机科学 领域(数学) 特征(语言学) 探测器 人工智能 过程(计算) 模式识别(心理学) 特征提取 数据挖掘 电信 生物化学 基因 操作系统 哲学 语言学 化学 纯数学 数学
作者
Zhoufeng Liu,Shanliang Liu,Chunlei Li,Bicao Li
出处
期刊:International Journal of Clothing Science and Technology [Emerald Publishing Limited]
卷期号:34 (2): 156-177 被引量:4
标识
DOI:10.1108/ijcst-07-2020-0108
摘要

Purpose This paper aims to propose a new method to solve the two problems in fabric defect detection. Current state-of-the-art industrial products defect detectors are deep learning-based, which incurs some additional problems: (1) The model is difficult to train due to too few fabric datasets for the difficulty of collecting pictures; (2) The detection accuracy of existing methods is insufficient to implement in the industrial field. This study intends to propose a new method which can be applied to fabric defect detection in the industrial field. Design/methodology/approach To cope with exist fabric defect detection problems, the article proposes a novel fabric defect detection method based on multi-source feature fusion. In the training process, both layer features and source model information are fused to enhance robustness and accuracy. Additionally, a novel training model called multi-source feature fusion (MSFF) is proposed to tackle the limited samples and demand to obtain fleet and precise quantification automatically. Findings The paper provides a novel fabric defect detection method, experimental results demonstrate that the proposed method achieves an AP of 93.9 and 98.8% when applied to the TILDA(a public dataset) and ZYFD datasets (a real-shot dataset), respectively, and outperforms 5.9% than fine-tuned SSD (single shot multi-box detector). Research limitations/implications Our proposed algorithm can provide a promising tool for fabric defect detection. Practical implications The paper includes implications for the development of a powerful brand image, the development of “brand ambassadors” and for managing the balance between stability and change. Social implications This work provides technical support for real-time detection on industrial sites, advances the process of intelligent manual detection of fabric defects and provides a technical reference for object detection on other industrial Originality/value Therefore, our proposed algorithm can provide a promising tool for fabric defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助hyl采纳,获得10
1秒前
Orange应助臻灏采纳,获得10
1秒前
科目三应助fighting采纳,获得10
2秒前
平常的玲完成签到,获得积分20
2秒前
ailsa发布了新的文献求助10
3秒前
kai_完成签到,获得积分10
3秒前
xxx完成签到,获得积分10
4秒前
潇洒发布了新的文献求助10
4秒前
CodeCraft应助夕荀采纳,获得10
8秒前
丘比特应助yemeiyu采纳,获得10
9秒前
路过你的夏完成签到,获得积分10
9秒前
9秒前
orixero应助小蚊子采纳,获得10
10秒前
热心市民小红花给swy212的求助进行了留言
11秒前
14秒前
evil完成签到,获得积分20
14秒前
一期一完成签到,获得积分10
15秒前
夕荀发布了新的文献求助10
19秒前
SciGPT应助White.K采纳,获得10
19秒前
onestepcloser完成签到 ,获得积分10
19秒前
可靠的冰烟完成签到,获得积分10
20秒前
灯灯发布了新的文献求助20
21秒前
bkagyin应助Eden采纳,获得10
22秒前
callous完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
深情安青应助Ronnie采纳,获得10
25秒前
科研通AI2S应助jiayun采纳,获得10
25秒前
26秒前
蓝兰发布了新的文献求助10
28秒前
活力依云发布了新的文献求助10
30秒前
乘风文月发布了新的文献求助10
31秒前
张小璐璐发布了新的文献求助10
31秒前
李健应助ggg采纳,获得20
31秒前
斯文败类应助眼睛大问旋采纳,获得10
31秒前
Doc完成签到,获得积分10
33秒前
34秒前
35秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952383
求助须知:如何正确求助?哪些是违规求助? 3497737
关于积分的说明 11088744
捐赠科研通 3228363
什么是DOI,文献DOI怎么找? 1784838
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303