Fabric defect detection based on multi-source feature fusion

稳健性(进化) 计算机科学 领域(数学) 特征(语言学) 探测器 人工智能 过程(计算) 模式识别(心理学) 特征提取 数据挖掘 电信 生物化学 基因 操作系统 哲学 语言学 化学 纯数学 数学
作者
Zhoufeng Liu,Shanliang Liu,Chunlei Li,Bicao Li
出处
期刊:International Journal of Clothing Science and Technology [Emerald Publishing Limited]
卷期号:34 (2): 156-177 被引量:4
标识
DOI:10.1108/ijcst-07-2020-0108
摘要

Purpose This paper aims to propose a new method to solve the two problems in fabric defect detection. Current state-of-the-art industrial products defect detectors are deep learning-based, which incurs some additional problems: (1) The model is difficult to train due to too few fabric datasets for the difficulty of collecting pictures; (2) The detection accuracy of existing methods is insufficient to implement in the industrial field. This study intends to propose a new method which can be applied to fabric defect detection in the industrial field. Design/methodology/approach To cope with exist fabric defect detection problems, the article proposes a novel fabric defect detection method based on multi-source feature fusion. In the training process, both layer features and source model information are fused to enhance robustness and accuracy. Additionally, a novel training model called multi-source feature fusion (MSFF) is proposed to tackle the limited samples and demand to obtain fleet and precise quantification automatically. Findings The paper provides a novel fabric defect detection method, experimental results demonstrate that the proposed method achieves an AP of 93.9 and 98.8% when applied to the TILDA(a public dataset) and ZYFD datasets (a real-shot dataset), respectively, and outperforms 5.9% than fine-tuned SSD (single shot multi-box detector). Research limitations/implications Our proposed algorithm can provide a promising tool for fabric defect detection. Practical implications The paper includes implications for the development of a powerful brand image, the development of “brand ambassadors” and for managing the balance between stability and change. Social implications This work provides technical support for real-time detection on industrial sites, advances the process of intelligent manual detection of fabric defects and provides a technical reference for object detection on other industrial Originality/value Therefore, our proposed algorithm can provide a promising tool for fabric defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄黑米发布了新的文献求助10
1秒前
1秒前
shinble发布了新的文献求助10
1秒前
geoman完成签到,获得积分10
3秒前
4秒前
务实的惜霜完成签到,获得积分10
6秒前
浮游应助juphen2采纳,获得10
6秒前
最初的远方完成签到,获得积分10
7秒前
独角兽发布了新的文献求助50
7秒前
tiger完成签到,获得积分10
8秒前
8秒前
8秒前
8R60d8应助ambitiouslu采纳,获得10
8秒前
从容以山完成签到,获得积分10
10秒前
11秒前
隐形曼青应助小程采纳,获得10
11秒前
11秒前
12秒前
12秒前
科研通AI6应助tt采纳,获得10
13秒前
GHB发布了新的文献求助10
13秒前
知行合一完成签到,获得积分20
14秒前
董烁烨发布了新的文献求助10
15秒前
从容以山发布了新的文献求助10
16秒前
16秒前
16秒前
啦啦啦啦啦完成签到,获得积分10
16秒前
16秒前
lullll应助Harper采纳,获得10
16秒前
小能潜水咕噜噜完成签到,获得积分10
17秒前
geoman发布了新的文献求助10
17秒前
汉堡包应助伍豪采纳,获得10
18秒前
20秒前
领导范儿应助琪求好运采纳,获得10
20秒前
20秒前
JMrider完成签到,获得积分10
20秒前
KNOW发布了新的文献求助10
21秒前
overlood发布了新的文献求助10
23秒前
冷艳折耳根完成签到 ,获得积分10
23秒前
杨小鸿完成签到 ,获得积分10
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225925
求助须知:如何正确求助?哪些是违规求助? 4397578
关于积分的说明 13686733
捐赠科研通 4262055
什么是DOI,文献DOI怎么找? 2338915
邀请新用户注册赠送积分活动 1336294
关于科研通互助平台的介绍 1292263