Fabric defect detection based on multi-source feature fusion

稳健性(进化) 计算机科学 领域(数学) 特征(语言学) 探测器 人工智能 过程(计算) 模式识别(心理学) 特征提取 数据挖掘 电信 生物化学 基因 操作系统 哲学 语言学 化学 纯数学 数学
作者
Zhoufeng Liu,Shanliang Liu,Chunlei Li,Bicao Li
出处
期刊:International Journal of Clothing Science and Technology [Emerald (MCB UP)]
卷期号:34 (2): 156-177 被引量:4
标识
DOI:10.1108/ijcst-07-2020-0108
摘要

Purpose This paper aims to propose a new method to solve the two problems in fabric defect detection. Current state-of-the-art industrial products defect detectors are deep learning-based, which incurs some additional problems: (1) The model is difficult to train due to too few fabric datasets for the difficulty of collecting pictures; (2) The detection accuracy of existing methods is insufficient to implement in the industrial field. This study intends to propose a new method which can be applied to fabric defect detection in the industrial field. Design/methodology/approach To cope with exist fabric defect detection problems, the article proposes a novel fabric defect detection method based on multi-source feature fusion. In the training process, both layer features and source model information are fused to enhance robustness and accuracy. Additionally, a novel training model called multi-source feature fusion (MSFF) is proposed to tackle the limited samples and demand to obtain fleet and precise quantification automatically. Findings The paper provides a novel fabric defect detection method, experimental results demonstrate that the proposed method achieves an AP of 93.9 and 98.8% when applied to the TILDA(a public dataset) and ZYFD datasets (a real-shot dataset), respectively, and outperforms 5.9% than fine-tuned SSD (single shot multi-box detector). Research limitations/implications Our proposed algorithm can provide a promising tool for fabric defect detection. Practical implications The paper includes implications for the development of a powerful brand image, the development of “brand ambassadors” and for managing the balance between stability and change. Social implications This work provides technical support for real-time detection on industrial sites, advances the process of intelligent manual detection of fabric defects and provides a technical reference for object detection on other industrial Originality/value Therefore, our proposed algorithm can provide a promising tool for fabric defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哎嘿应助激情的一斩采纳,获得10
2秒前
可乐发布了新的文献求助10
2秒前
ttt完成签到,获得积分10
3秒前
4秒前
天易发布了新的文献求助10
5秒前
李健的粉丝团团长应助wcy采纳,获得10
6秒前
zqingqing发布了新的文献求助10
6秒前
7秒前
7秒前
wujiwuhui发布了新的文献求助10
7秒前
Rollei发布了新的文献求助10
8秒前
英俊的铭应助阿布采纳,获得10
9秒前
月半完成签到,获得积分10
9秒前
9秒前
失眠的耳机完成签到,获得积分10
9秒前
WEI发布了新的文献求助20
9秒前
情怀应助搞份炸鸡778采纳,获得10
10秒前
可乐完成签到,获得积分20
10秒前
酷酷的穆完成签到,获得积分20
12秒前
12秒前
curtisness应助xxx采纳,获得10
12秒前
12秒前
琉璃完成签到,获得积分10
13秒前
一二完成签到,获得积分10
14秒前
sssss发布了新的文献求助10
15秒前
跳跃仙人掌完成签到,获得积分0
15秒前
yangyangll完成签到,获得积分10
15秒前
17秒前
dev-evo发布了新的文献求助10
17秒前
18秒前
科目三应助彩色的向珊采纳,获得10
18秒前
慕青应助若狂采纳,获得10
18秒前
佳佳完成签到,获得积分10
19秒前
Billy应助老北京采纳,获得10
20秒前
科研通AI2S应助老北京采纳,获得10
20秒前
tan90完成签到,获得积分10
20秒前
20秒前
佳佳发布了新的文献求助10
21秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148361
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7835018
捐赠科研通 2456710
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655