A Physics-informed Neural Network for Wind Turbine Main Bearing Fatigue

失效物理学 涡轮机 人工神经网络 方位(导航) 合并(版本控制) 工程类 计算机科学 机械工程 人工智能 物理 可靠性(半导体) 功率(物理) 量子力学 情报检索
作者
Yigit Yucesan,Felipe Viana
出处
期刊:International journal of prognostics and health management [The Prognostics and Health Management Society]
卷期号:11 (1) 被引量:58
标识
DOI:10.36001/ijphm.2020.v11i1.2594
摘要

Unexpected main bearing failure on a wind turbine causes unwanted maintenance and increased operation costs (mainly due to crane, parts, labor, and production loss). Unfortunately, historical data indicates that failure can happen far earlier than the component design lives. Root cause analysis investigations have pointed to problems inherent from manufacturing as the major contributor, as well as issues related to event loads (e.g., startups, shutdowns, and emergency stops), extreme environmental conditions, and maintenance practices, among others. Altogether, the multiple failure modes and contributors make modeling the remaining useful life of main bearings a very daunting task. In this paper, we present a novel physics-informed neural network modeling approach for main bearing fatigue. The proposed approach is fully hybrid and designed to merge physics-informed and data-driven layers within deep neural networks. The result is a cumulative damage model where the physics-informed layers are used model the relatively well-understood physics (L10 fatigue life) and the data-driven layers account for the hard to model components (i.e., grease degradation).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助必中采纳,获得10
刚刚
海绵发布了新的文献求助30
1秒前
兴钬完成签到 ,获得积分10
1秒前
肚子没肥完成签到,获得积分10
2秒前
情怀应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得10
4秒前
iNk应助科研通管家采纳,获得20
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
卡奇Mikey完成签到,获得积分10
5秒前
az发布了新的文献求助30
6秒前
7秒前
清漪完成签到,获得积分10
8秒前
8秒前
科研通AI5应助Aggie采纳,获得20
9秒前
豆子完成签到,获得积分10
9秒前
11秒前
11秒前
12秒前
nn发布了新的文献求助10
13秒前
童绾绾完成签到,获得积分10
13秒前
Akim应助张雯思采纳,获得10
14秒前
科目三应助张雯思采纳,获得10
14秒前
丘比特应助张雯思采纳,获得10
14秒前
bkagyin应助张雯思采纳,获得10
14秒前
大模型应助张雯思采纳,获得10
14秒前
14秒前
852应助张雯思采纳,获得10
14秒前
我是老大应助张雯思采纳,获得10
14秒前
脑洞疼应助张雯思采纳,获得10
14秒前
MchemG应助张雯思采纳,获得10
14秒前
小郭发布了新的文献求助10
14秒前
NexusExplorer应助chengyi采纳,获得10
16秒前
16秒前
16秒前
强国复兴完成签到,获得积分10
16秒前
豆子完成签到,获得积分0
18秒前
Qingwenxin发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010961
求助须知:如何正确求助?哪些是违规求助? 3550599
关于积分的说明 11306013
捐赠科研通 3284931
什么是DOI,文献DOI怎么找? 1810918
邀请新用户注册赠送积分活动 886594
科研通“疑难数据库(出版商)”最低求助积分说明 811514