Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy

医学 肥厚性心肌病 左心室肥大 心脏病学 内科学 血压 人工智能 计算机科学
作者
Jessica Torres Soto,Hughes Jw,Sánchez Pa,Marco Perez,David Ouyang,Euan A. Ashley
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:3
标识
DOI:10.1101/2021.06.13.21258860
摘要

Abstract Determining the etiology of left ventricular hypertrophy (LVH) can be challenging due to the similarity in clinical presentation and cardiac morphological features of diverse causes of disease. In particular, distinguishing individuals with hypertrophic cardiomyopathy (HCM) from the much larger set of individuals with manifest or occult hypertension (HTN) is of major importance for family screening and the prevention of sudden death. We hypothesized that deep learning based joint interpretation of 12 lead electrocardiograms and echocardiogram videos could augment physician interpretation. We chose not to train on proximate data labels such as physician over-reads of ECGs or echocardiograms but instead took advantage of electronic health record derived clinical blood pressure measurements and diagnostic consensus (often including molecular testing) among physicians in an HCM center of excellence. Using over 18,000 combined instances of electrocardiograms and echocardiograms from 2,728 patients, we developed LVH-Fusion. On held-out test data, LVH-Fusion achieved an F1-score of 0.71 in predicting HCM, and 0.96 in predicting HTN. In head-to-head comparison with human readers LVH-Fusion had higher sensitivity and specificity rates than its human counterparts. Finally, we use explainability techniques to investigate local and global features that positively and negatively impact LVH-Fusion prediction estimates providing confirmation from unsupervised analysis the diagnostic power of lateral T wave inversion on the ECG and proximal septal hypertrophy on the echocardiogram for HCM. In conclusion, these results show that deep learning can provide effective physician augmentation in the face of a common diagnostic dilemma with far reaching implications for the prevention of sudden cardiac death.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多啦啦完成签到,获得积分10
1秒前
酷波er应助SDS采纳,获得10
1秒前
寄语明月完成签到,获得积分10
2秒前
Iso完成签到,获得积分10
3秒前
jianjiao完成签到,获得积分10
4秒前
纯真书兰完成签到,获得积分10
4秒前
魔幻的访云完成签到 ,获得积分10
4秒前
刘畅完成签到 ,获得积分10
4秒前
4秒前
一一发布了新的文献求助10
5秒前
longbao完成签到,获得积分20
5秒前
小袁完成签到,获得积分10
7秒前
9秒前
思源应助longbao采纳,获得10
10秒前
03发布了新的文献求助10
10秒前
10秒前
liuliu完成签到 ,获得积分10
10秒前
keke完成签到,获得积分10
11秒前
火山暴涨球技完成签到,获得积分10
11秒前
糊涂的雁易完成签到,获得积分10
12秒前
13秒前
MMM完成签到 ,获得积分10
14秒前
sara完成签到 ,获得积分10
15秒前
16秒前
16秒前
安详寒凝发布了新的文献求助10
16秒前
Halo完成签到,获得积分10
16秒前
迷人紫萱发布了新的文献求助20
17秒前
17秒前
BINBIN完成签到 ,获得积分10
17秒前
万能图书馆应助damaaaaaa采纳,获得10
17秒前
xiaofeng5838完成签到,获得积分10
18秒前
Owen应助陶醉以柳采纳,获得30
18秒前
SDS发布了新的文献求助10
20秒前
繁荣的柏柳完成签到,获得积分10
20秒前
景平完成签到,获得积分10
21秒前
Singularity应助自信若灵采纳,获得10
21秒前
cheng完成签到,获得积分10
21秒前
高xuewen完成签到,获得积分10
22秒前
zz123完成签到,获得积分10
22秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171705
求助须知:如何正确求助?哪些是违规求助? 2822489
关于积分的说明 7939622
捐赠科研通 2483179
什么是DOI,文献DOI怎么找? 1323058
科研通“疑难数据库(出版商)”最低求助积分说明 633834
版权声明 602647