Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy

医学 肥厚性心肌病 左心室肥大 心脏病学 内科学 血压 人工智能 计算机科学
作者
Jessica Torres Soto,Hughes Jw,Sánchez Pa,Marco Perez,David Ouyang,Euan A. Ashley
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:3
标识
DOI:10.1101/2021.06.13.21258860
摘要

Abstract Determining the etiology of left ventricular hypertrophy (LVH) can be challenging due to the similarity in clinical presentation and cardiac morphological features of diverse causes of disease. In particular, distinguishing individuals with hypertrophic cardiomyopathy (HCM) from the much larger set of individuals with manifest or occult hypertension (HTN) is of major importance for family screening and the prevention of sudden death. We hypothesized that deep learning based joint interpretation of 12 lead electrocardiograms and echocardiogram videos could augment physician interpretation. We chose not to train on proximate data labels such as physician over-reads of ECGs or echocardiograms but instead took advantage of electronic health record derived clinical blood pressure measurements and diagnostic consensus (often including molecular testing) among physicians in an HCM center of excellence. Using over 18,000 combined instances of electrocardiograms and echocardiograms from 2,728 patients, we developed LVH-Fusion. On held-out test data, LVH-Fusion achieved an F1-score of 0.71 in predicting HCM, and 0.96 in predicting HTN. In head-to-head comparison with human readers LVH-Fusion had higher sensitivity and specificity rates than its human counterparts. Finally, we use explainability techniques to investigate local and global features that positively and negatively impact LVH-Fusion prediction estimates providing confirmation from unsupervised analysis the diagnostic power of lateral T wave inversion on the ECG and proximal septal hypertrophy on the echocardiogram for HCM. In conclusion, these results show that deep learning can provide effective physician augmentation in the face of a common diagnostic dilemma with far reaching implications for the prevention of sudden cardiac death.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小卡拉米完成签到,获得积分10
刚刚
SciGPT应助CHINA_C13采纳,获得10
刚刚
orixero应助CHINA_C13采纳,获得10
刚刚
CodeCraft应助CHINA_C13采纳,获得150
刚刚
科研通AI6应助CHINA_C13采纳,获得150
刚刚
科研通AI6应助CHINA_C13采纳,获得10
刚刚
科研通AI6应助CHINA_C13采纳,获得150
刚刚
小羊先生完成签到 ,获得积分10
刚刚
云游归尘发布了新的文献求助10
1秒前
小童发布了新的文献求助10
1秒前
饱满以松完成签到 ,获得积分10
1秒前
1秒前
2秒前
平平发布了新的文献求助10
2秒前
凶狠的储发布了新的文献求助10
2秒前
冰菱完成签到,获得积分10
2秒前
Owen应助碎碎采纳,获得10
2秒前
warithy发布了新的文献求助10
3秒前
Ethanyoyo0917完成签到,获得积分10
3秒前
Ava应助优雅的老姆采纳,获得10
3秒前
liekkas发布了新的文献求助10
3秒前
4秒前
小赵发布了新的文献求助30
5秒前
背包包包应助知性的雅彤采纳,获得10
5秒前
6秒前
DHY发布了新的文献求助10
6秒前
疯狂的问枫完成签到,获得积分20
7秒前
李健应助warithy采纳,获得10
7秒前
7秒前
8秒前
睿洁洁发布了新的文献求助10
9秒前
123发布了新的文献求助10
9秒前
元气马完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
缥缈傥发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
Orange应助ahahaha采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002