Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy

医学 肥厚性心肌病 左心室肥大 心脏病学 内科学 血压 人工智能 计算机科学
作者
Jessica Torres Soto,Hughes Jw,Sánchez Pa,Marco Perez,David Ouyang,Euan A. Ashley
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:3
标识
DOI:10.1101/2021.06.13.21258860
摘要

Abstract Determining the etiology of left ventricular hypertrophy (LVH) can be challenging due to the similarity in clinical presentation and cardiac morphological features of diverse causes of disease. In particular, distinguishing individuals with hypertrophic cardiomyopathy (HCM) from the much larger set of individuals with manifest or occult hypertension (HTN) is of major importance for family screening and the prevention of sudden death. We hypothesized that deep learning based joint interpretation of 12 lead electrocardiograms and echocardiogram videos could augment physician interpretation. We chose not to train on proximate data labels such as physician over-reads of ECGs or echocardiograms but instead took advantage of electronic health record derived clinical blood pressure measurements and diagnostic consensus (often including molecular testing) among physicians in an HCM center of excellence. Using over 18,000 combined instances of electrocardiograms and echocardiograms from 2,728 patients, we developed LVH-Fusion. On held-out test data, LVH-Fusion achieved an F1-score of 0.71 in predicting HCM, and 0.96 in predicting HTN. In head-to-head comparison with human readers LVH-Fusion had higher sensitivity and specificity rates than its human counterparts. Finally, we use explainability techniques to investigate local and global features that positively and negatively impact LVH-Fusion prediction estimates providing confirmation from unsupervised analysis the diagnostic power of lateral T wave inversion on the ECG and proximal septal hypertrophy on the echocardiogram for HCM. In conclusion, these results show that deep learning can provide effective physician augmentation in the face of a common diagnostic dilemma with far reaching implications for the prevention of sudden cardiac death.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
natmed应助cai采纳,获得10
2秒前
淡淡的语柳完成签到 ,获得积分10
2秒前
JamesPei应助Cloud采纳,获得10
2秒前
yu202408应助刘忙采纳,获得50
3秒前
Ivy完成签到,获得积分10
3秒前
科研狗发布了新的文献求助10
5秒前
耍酷的母鸡完成签到,获得积分10
6秒前
nuannuan完成签到,获得积分20
7秒前
信仰完成签到,获得积分10
8秒前
顺心的尔安完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
13秒前
FashionBoy应助乐观的颦采纳,获得10
15秒前
lili发布了新的文献求助10
16秒前
123发布了新的文献求助10
18秒前
qiyi93发布了新的文献求助10
19秒前
cyy完成签到,获得积分20
19秒前
Cloud发布了新的文献求助10
21秒前
沉静的煎蛋完成签到,获得积分10
24秒前
优美松思完成签到 ,获得积分10
25秒前
碳酸氢钠完成签到,获得积分10
25秒前
花开的声音1217完成签到,获得积分10
25秒前
dydydyd完成签到,获得积分10
26秒前
27秒前
123完成签到,获得积分10
27秒前
qiyi93完成签到,获得积分10
28秒前
30秒前
开始完成签到,获得积分10
31秒前
32秒前
cyy驳回了脑洞疼应助
32秒前
Ensam发布了新的文献求助50
33秒前
little发布了新的文献求助10
35秒前
LunminBao发布了新的文献求助10
35秒前
贾克斯发布了新的文献求助10
37秒前
mufcyang完成签到,获得积分10
38秒前
闪闪的金毛完成签到,获得积分10
38秒前
ChenYX发布了新的文献求助20
41秒前
Akim应助欣喜莫言采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295779
求助须知:如何正确求助?哪些是违规求助? 4445137
关于积分的说明 13835545
捐赠科研通 4329666
什么是DOI,文献DOI怎么找? 2376742
邀请新用户注册赠送积分活动 1372009
关于科研通互助平台的介绍 1337376