Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy

医学 肥厚性心肌病 左心室肥大 心脏病学 内科学 血压 人工智能 计算机科学
作者
Jessica Torres Soto,Hughes Jw,Sánchez Pa,Marco Perez,David Ouyang,Euan A. Ashley
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:3
标识
DOI:10.1101/2021.06.13.21258860
摘要

Abstract Determining the etiology of left ventricular hypertrophy (LVH) can be challenging due to the similarity in clinical presentation and cardiac morphological features of diverse causes of disease. In particular, distinguishing individuals with hypertrophic cardiomyopathy (HCM) from the much larger set of individuals with manifest or occult hypertension (HTN) is of major importance for family screening and the prevention of sudden death. We hypothesized that deep learning based joint interpretation of 12 lead electrocardiograms and echocardiogram videos could augment physician interpretation. We chose not to train on proximate data labels such as physician over-reads of ECGs or echocardiograms but instead took advantage of electronic health record derived clinical blood pressure measurements and diagnostic consensus (often including molecular testing) among physicians in an HCM center of excellence. Using over 18,000 combined instances of electrocardiograms and echocardiograms from 2,728 patients, we developed LVH-Fusion. On held-out test data, LVH-Fusion achieved an F1-score of 0.71 in predicting HCM, and 0.96 in predicting HTN. In head-to-head comparison with human readers LVH-Fusion had higher sensitivity and specificity rates than its human counterparts. Finally, we use explainability techniques to investigate local and global features that positively and negatively impact LVH-Fusion prediction estimates providing confirmation from unsupervised analysis the diagnostic power of lateral T wave inversion on the ECG and proximal septal hypertrophy on the echocardiogram for HCM. In conclusion, these results show that deep learning can provide effective physician augmentation in the face of a common diagnostic dilemma with far reaching implications for the prevention of sudden cardiac death.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ppg123应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
刚刚
Owen应助科研通管家采纳,获得10
刚刚
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
meyokki应助科研通管家采纳,获得30
1秒前
科研通AI6.1应助Jankin采纳,获得10
1秒前
净净子发布了新的文献求助10
1秒前
1秒前
1秒前
修越发布了新的文献求助10
2秒前
wanglan完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
san完成签到,获得积分10
4秒前
肱二头肌完成签到,获得积分10
4秒前
浮生六记完成签到 ,获得积分10
4秒前
5秒前
6秒前
Jasper应助含糊的沛珊采纳,获得10
6秒前
6秒前
6秒前
勤恳的隶完成签到,获得积分10
6秒前
张慧杰完成签到,获得积分10
7秒前
7秒前
wanglan发布了新的文献求助10
7秒前
8秒前
容易66完成签到 ,获得积分10
8秒前
8秒前
9秒前
10秒前
天天快乐应助英吉利25采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
辛勤小鸭子关注了科研通微信公众号
11秒前
12秒前
cxl发布了新的文献求助30
12秒前
bkagyin应助风云鱼采纳,获得10
12秒前
GingerF应助Shallow采纳,获得50
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743323
求助须知:如何正确求助?哪些是违规求助? 5413456
关于积分的说明 15347310
捐赠科研通 4884139
什么是DOI,文献DOI怎么找? 2625595
邀请新用户注册赠送积分活动 1574486
关于科研通互助平台的介绍 1531380