TMS-GAN: A Twofold Multi-Scale Generative Adversarial Network for Single Image Dehazing

计算机科学 薄雾 人工智能 块(置换群论) 图像(数学) 比例(比率) 模式识别(心理学) 计算机视觉 鉴别器 特征(语言学) 电信 探测器 物理 哲学 量子力学 气象学 语言学 数学 几何学
作者
Pengyu Wang,Hongqing Zhu,Hui Huang,Han Zhang,Nan Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 2760-2772 被引量:37
标识
DOI:10.1109/tcsvt.2021.3097713
摘要

In recent years, learning-based single image dehazing networks have been comprehensively developed. However, performance improvement is limited due to domain shift between trained synthetic hazy images and untrained real-world hazy images. To alleviate this issue, this paper proposes a real-world dehazing targeted training scheme which nearly realizes paired real-world data training. As a result, a Twofold Multi-scale Generative Adversarial Network (TMS-GAN) consisting of a Haze-generation GAN (HgGAN) and a Haze-removal GAN (HrGAN) is designed. HgGAN attributes real haze properties to synthetic images and HrGAN removes haze from both synthetic and generated fake realistic data under supervision. Thus, the proposed method can better adapt to real-world image dehazing using this cooperative training scheme. Meanwhile, several structural advances of TMS-GAN also improve dehazing performance. Specifically, a haze residual map based on atmospheric scattering model is deduced in HgGAN for fake realistic data generation. The dual-branch generator in HrGAN draws attention to detail restoration by one branch along with another color-branch. A plug-and-play Multi-attention Progressive Fusion Module (MAPFM) is proposed and inserted in both HgGAN and HrGAN. MAPFM incorporates multi-attention mechanism to guide multi-scale feature fusion in a progressive manner, in which Adjacency-attention Block (AAB) can capture contributing features of each level and Self-attention Block (SAB) can establish non-local dependency of feature fusion. Experiments on mainstream benchmarks show that the proposed framework is superior especially on real-world hazy images among single image dehazing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
在水一方应助郑荻凡采纳,获得10
1秒前
彭于晏应助路路采纳,获得10
2秒前
rebeycca发布了新的文献求助10
3秒前
4秒前
4秒前
研友_VZG7GZ应助江流儿采纳,获得10
4秒前
林林完成签到,获得积分10
6秒前
今后应助hhh采纳,获得10
7秒前
体贴的梦露完成签到,获得积分10
8秒前
大个应助李萌采纳,获得10
8秒前
郝宝真发布了新的文献求助10
9秒前
GZX完成签到,获得积分10
10秒前
斯文败类应助tree采纳,获得10
11秒前
18746005898完成签到,获得积分10
11秒前
火星上盼海完成签到,获得积分10
14秒前
18746005898发布了新的文献求助20
16秒前
李萌完成签到,获得积分20
16秒前
17秒前
19秒前
20秒前
20秒前
口口发布了新的文献求助10
20秒前
tree完成签到,获得积分10
21秒前
李萌发布了新的文献求助10
21秒前
星辰大海应助安逸1采纳,获得10
22秒前
sissi应助王水苗采纳,获得10
23秒前
anika完成签到 ,获得积分10
24秒前
sshah发布了新的文献求助10
24秒前
郭郭发布了新的文献求助10
25秒前
tree发布了新的文献求助10
25秒前
26秒前
如意竺完成签到,获得积分10
28秒前
科目三应助GK采纳,获得10
29秒前
30秒前
热情笑旋完成签到,获得积分10
30秒前
31秒前
31秒前
今后应助郭郭采纳,获得10
32秒前
德鲁大叔完成签到,获得积分10
32秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165460
求助须知:如何正确求助?哪些是违规求助? 2816530
关于积分的说明 7913032
捐赠科研通 2476092
什么是DOI,文献DOI怎么找? 1318663
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388