TMS-GAN: A Twofold Multi-Scale Generative Adversarial Network for Single Image Dehazing

计算机科学 薄雾 人工智能 块(置换群论) 图像(数学) 比例(比率) 模式识别(心理学) 计算机视觉 鉴别器 特征(语言学) 电信 探测器 物理 哲学 量子力学 气象学 语言学 数学 几何学
作者
Pengyu Wang,Hongqing Zhu,Hui Huang,Han Zhang,Nan Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 2760-2772 被引量:37
标识
DOI:10.1109/tcsvt.2021.3097713
摘要

In recent years, learning-based single image dehazing networks have been comprehensively developed. However, performance improvement is limited due to domain shift between trained synthetic hazy images and untrained real-world hazy images. To alleviate this issue, this paper proposes a real-world dehazing targeted training scheme which nearly realizes paired real-world data training. As a result, a Twofold Multi-scale Generative Adversarial Network (TMS-GAN) consisting of a Haze-generation GAN (HgGAN) and a Haze-removal GAN (HrGAN) is designed. HgGAN attributes real haze properties to synthetic images and HrGAN removes haze from both synthetic and generated fake realistic data under supervision. Thus, the proposed method can better adapt to real-world image dehazing using this cooperative training scheme. Meanwhile, several structural advances of TMS-GAN also improve dehazing performance. Specifically, a haze residual map based on atmospheric scattering model is deduced in HgGAN for fake realistic data generation. The dual-branch generator in HrGAN draws attention to detail restoration by one branch along with another color-branch. A plug-and-play Multi-attention Progressive Fusion Module (MAPFM) is proposed and inserted in both HgGAN and HrGAN. MAPFM incorporates multi-attention mechanism to guide multi-scale feature fusion in a progressive manner, in which Adjacency-attention Block (AAB) can capture contributing features of each level and Self-attention Block (SAB) can establish non-local dependency of feature fusion. Experiments on mainstream benchmarks show that the proposed framework is superior especially on real-world hazy images among single image dehazing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来世飞鸟发布了新的文献求助10
刚刚
一个有点长的序完成签到 ,获得积分10
刚刚
刚刚
2秒前
聪慧的微笑完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
橘子发布了新的文献求助30
5秒前
山河发布了新的文献求助10
5秒前
小小歌2015发布了新的文献求助10
6秒前
zywii完成签到,获得积分10
6秒前
7秒前
科研通AI5应助Ring采纳,获得10
9秒前
魔幻蓉完成签到,获得积分10
9秒前
ZiXuanCui发布了新的文献求助10
9秒前
顾矜应助小枣采纳,获得10
10秒前
Hexagram发布了新的文献求助10
10秒前
小白杨完成签到,获得积分10
11秒前
Lucas应助橘子采纳,获得10
12秒前
然大宝完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
飞快的老太完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
斯文败类应助ZiXuanCui采纳,获得10
16秒前
小杨完成签到 ,获得积分10
17秒前
18秒前
愉快的老三完成签到,获得积分10
18秒前
18秒前
河南彭于晏完成签到,获得积分10
19秒前
风枞完成签到 ,获得积分10
19秒前
搞怪世德发布了新的文献求助10
19秒前
19秒前
梦在彼岸完成签到,获得积分10
20秒前
薇薇快跑发布了新的文献求助10
21秒前
甜甜匪发布了新的文献求助10
21秒前
mm发布了新的文献求助30
23秒前
杳子尧发布了新的文献求助10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979896
求助须知:如何正确求助?哪些是违规求助? 3523949
关于积分的说明 11219166
捐赠科研通 3261387
什么是DOI,文献DOI怎么找? 1800629
邀请新用户注册赠送积分活动 879209
科研通“疑难数据库(出版商)”最低求助积分说明 807202