TMS-GAN: A Twofold Multi-Scale Generative Adversarial Network for Single Image Dehazing

计算机科学 薄雾 人工智能 块(置换群论) 图像(数学) 比例(比率) 模式识别(心理学) 计算机视觉 鉴别器 特征(语言学) 电信 探测器 物理 哲学 量子力学 气象学 语言学 数学 几何学
作者
Pengyu Wang,Hongqing Zhu,Hui Huang,Han Zhang,Nan Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 2760-2772 被引量:37
标识
DOI:10.1109/tcsvt.2021.3097713
摘要

In recent years, learning-based single image dehazing networks have been comprehensively developed. However, performance improvement is limited due to domain shift between trained synthetic hazy images and untrained real-world hazy images. To alleviate this issue, this paper proposes a real-world dehazing targeted training scheme which nearly realizes paired real-world data training. As a result, a Twofold Multi-scale Generative Adversarial Network (TMS-GAN) consisting of a Haze-generation GAN (HgGAN) and a Haze-removal GAN (HrGAN) is designed. HgGAN attributes real haze properties to synthetic images and HrGAN removes haze from both synthetic and generated fake realistic data under supervision. Thus, the proposed method can better adapt to real-world image dehazing using this cooperative training scheme. Meanwhile, several structural advances of TMS-GAN also improve dehazing performance. Specifically, a haze residual map based on atmospheric scattering model is deduced in HgGAN for fake realistic data generation. The dual-branch generator in HrGAN draws attention to detail restoration by one branch along with another color-branch. A plug-and-play Multi-attention Progressive Fusion Module (MAPFM) is proposed and inserted in both HgGAN and HrGAN. MAPFM incorporates multi-attention mechanism to guide multi-scale feature fusion in a progressive manner, in which Adjacency-attention Block (AAB) can capture contributing features of each level and Self-attention Block (SAB) can establish non-local dependency of feature fusion. Experiments on mainstream benchmarks show that the proposed framework is superior especially on real-world hazy images among single image dehazing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
aging00发布了新的文献求助10
1秒前
doby发布了新的文献求助10
3秒前
秀丽小猫咪应助殷勤的紫槐采纳,获得500
3秒前
4秒前
清脆仙人掌完成签到 ,获得积分10
6秒前
7秒前
谦让寻凝完成签到 ,获得积分10
7秒前
donwe发布了新的文献求助10
8秒前
9秒前
10秒前
baiyeok发布了新的文献求助30
11秒前
zqzqz完成签到,获得积分10
12秒前
13秒前
鸡蛋布丁发布了新的文献求助10
14秒前
星光完成签到,获得积分10
15秒前
15秒前
土土完成签到,获得积分10
16秒前
简让完成签到 ,获得积分10
16秒前
20秒前
12木发布了新的文献求助10
22秒前
24秒前
29秒前
12木完成签到,获得积分10
31秒前
馍夹菜完成签到,获得积分10
34秒前
34秒前
LiQi完成签到,获得积分10
34秒前
38秒前
科目三应助zhu采纳,获得10
42秒前
Shan发布了新的文献求助10
43秒前
44秒前
浮游应助闭眼听风雨采纳,获得10
45秒前
yyanxuemin919发布了新的文献求助10
46秒前
青葱鱼块完成签到 ,获得积分10
49秒前
浅沐发布了新的文献求助10
49秒前
3dyf发布了新的文献求助10
51秒前
52秒前
Keyto7应助Wenfeifei采纳,获得10
54秒前
丹D完成签到,获得积分10
55秒前
蒲云海发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563611
求助须知:如何正确求助?哪些是违规求助? 4648542
关于积分的说明 14685176
捐赠科研通 4590481
什么是DOI,文献DOI怎么找? 2518577
邀请新用户注册赠送积分活动 1491168
关于科研通互助平台的介绍 1462471