Simultaneous Assessment of Damage and Unknown Input for Large Structural Systems by UKF-UI

卡尔曼滤波器 加速度 流离失所(心理学) 计算机科学 噪音(视频) 鉴定(生物学) 帧(网络) 结构健康监测 控制理论(社会学) 算法 工程类 人工智能 结构工程 控制(管理) 物理 心理治疗师 图像(数学) 生物 电信 经典力学 植物 心理学
作者
Ying Lei,Xingyu Li,Jinshan Huang,Lijun Liu
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:147 (10) 被引量:2
标识
DOI:10.1061/(asce)em.1943-7889.0001981
摘要

Much progress has been made in the assessment of structural damage and unknown input (UI) using incomplete and noisy measurement signals. The unscented Kalman filter (UKF) has proved to be a sophisticated approach to this task. A novel method using UKF with unknown input (UKF-UI) for recursive identification of a state-input system has been proposed by the authors. However, the purpose of this study was to propose the new UKF-UI framework and validate it with some simple structures. Although very limited research has been conducted on the UKF for health assessment of large structural systems, including two-dimensional (2D) and three-dimensional (3D) frame structures, it is based on a two-stage approach and requires full measurement of all acceleration, velocity, and displacement responses in the substructure containing the UI. Some implementations either have limitations in real-time identification or need assumptions on the time evolution of UI. One example is the random walk hypothesis, which heavily depends on the tuning of noise parameters. The application of UKF to large structural systems is still a challenging problem. This observation has prompted the authors to investigate the UKF-UI framework for identification of large structural systems. Here, it is extended to the assessment of damage and UI by the UKF-UI method for 2D and a 3D finite-element (FE) frame models. By the partially measured noise-polluted structural acceleration and displacement responses, the extent and location of damage is assessed at the element level. The unknown external excitations are simultaneously identified with no assumptions about the time evolutions of a one-stage identification process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天边发布了新的文献求助10
1秒前
Jacquielin完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
dsw发布了新的文献求助30
3秒前
潇洒一曲完成签到,获得积分10
4秒前
田様应助ELITOmiko采纳,获得10
4秒前
刘旋发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
钙离子发布了新的文献求助10
6秒前
bkagyin应助Zu采纳,获得10
8秒前
lk完成签到,获得积分20
8秒前
炒鸡小将发布了新的文献求助10
9秒前
马路完成签到 ,获得积分10
10秒前
再慕完成签到,获得积分10
11秒前
guangshuang发布了新的文献求助10
11秒前
眯眯眼的衬衫应助小淘气采纳,获得10
15秒前
JamesPei应助aaaaa采纳,获得10
16秒前
CAOHOU举报细心小鸭子求助涉嫌违规
18秒前
Merlin应助Zack采纳,获得30
19秒前
奋斗向南完成签到,获得积分10
19秒前
雪碧发布了新的文献求助20
19秒前
Hello应助坚强的赛凤采纳,获得10
19秒前
志轩应助李锐采纳,获得10
20秒前
酷炫鑫完成签到,获得积分10
21秒前
22秒前
小比熊完成签到,获得积分10
23秒前
24秒前
24秒前
25秒前
25秒前
26秒前
Rondab应助科研通管家采纳,获得10
26秒前
26秒前
Rondab应助科研通管家采纳,获得10
26秒前
所所应助科研通管家采纳,获得10
26秒前
科目三应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959141
求助须知:如何正确求助?哪些是违规求助? 3505468
关于积分的说明 11123941
捐赠科研通 3237159
什么是DOI,文献DOI怎么找? 1788988
邀请新用户注册赠送积分活动 871478
科研通“疑难数据库(出版商)”最低求助积分说明 802824