Simultaneous Assessment of Damage and Unknown Input for Large Structural Systems by UKF-UI

卡尔曼滤波器 加速度 流离失所(心理学) 计算机科学 噪音(视频) 鉴定(生物学) 帧(网络) 结构健康监测 控制理论(社会学) 算法 工程类 人工智能 结构工程 控制(管理) 物理 心理学 电信 植物 经典力学 图像(数学) 心理治疗师 生物
作者
Ying Lei,Xingyu Li,Jinshan Huang,Lijun Liu
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:147 (10) 被引量:2
标识
DOI:10.1061/(asce)em.1943-7889.0001981
摘要

Much progress has been made in the assessment of structural damage and unknown input (UI) using incomplete and noisy measurement signals. The unscented Kalman filter (UKF) has proved to be a sophisticated approach to this task. A novel method using UKF with unknown input (UKF-UI) for recursive identification of a state-input system has been proposed by the authors. However, the purpose of this study was to propose the new UKF-UI framework and validate it with some simple structures. Although very limited research has been conducted on the UKF for health assessment of large structural systems, including two-dimensional (2D) and three-dimensional (3D) frame structures, it is based on a two-stage approach and requires full measurement of all acceleration, velocity, and displacement responses in the substructure containing the UI. Some implementations either have limitations in real-time identification or need assumptions on the time evolution of UI. One example is the random walk hypothesis, which heavily depends on the tuning of noise parameters. The application of UKF to large structural systems is still a challenging problem. This observation has prompted the authors to investigate the UKF-UI framework for identification of large structural systems. Here, it is extended to the assessment of damage and UI by the UKF-UI method for 2D and a 3D finite-element (FE) frame models. By the partially measured noise-polluted structural acceleration and displacement responses, the extent and location of damage is assessed at the element level. The unknown external excitations are simultaneously identified with no assumptions about the time evolutions of a one-stage identification process.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hfguwn发布了新的文献求助10
2秒前
111发布了新的文献求助10
4秒前
yang发布了新的文献求助10
4秒前
所所应助热情的凡波采纳,获得10
5秒前
悟兰因关注了科研通微信公众号
5秒前
泥巴完成签到,获得积分10
5秒前
WWW发布了新的文献求助10
5秒前
8秒前
HHW完成签到,获得积分10
9秒前
赵雪莹完成签到,获得积分20
10秒前
万能图书馆应助析木采纳,获得10
10秒前
竹本完成签到 ,获得积分10
10秒前
12秒前
李健的粉丝团团长应助wym采纳,获得10
13秒前
14秒前
14秒前
Lialilico发布了新的文献求助10
15秒前
小顾完成签到 ,获得积分10
16秒前
Lucas应助海德堡采纳,获得10
17秒前
鹿乃发布了新的文献求助10
18秒前
有理想发布了新的文献求助10
19秒前
20秒前
SciGPT应助Oay采纳,获得10
20秒前
科目三应助欢呼忆丹采纳,获得10
20秒前
善良的新之完成签到 ,获得积分10
21秒前
23秒前
23秒前
23秒前
23秒前
23秒前
23秒前
小二郎应助科研通管家采纳,获得10
24秒前
24秒前
Lucas应助科研通管家采纳,获得10
24秒前
Hello应助科研通管家采纳,获得10
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
yznfly应助科研通管家采纳,获得50
24秒前
24秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5838357
求助须知:如何正确求助?哪些是违规求助? 6131760
关于积分的说明 15601065
捐赠科研通 4956509
什么是DOI,文献DOI怎么找? 2671654
邀请新用户注册赠送积分活动 1616831
关于科研通互助平台的介绍 1571949