Simultaneous Assessment of Damage and Unknown Input for Large Structural Systems by UKF-UI

卡尔曼滤波器 加速度 流离失所(心理学) 计算机科学 噪音(视频) 鉴定(生物学) 帧(网络) 结构健康监测 控制理论(社会学) 算法 工程类 人工智能 结构工程 控制(管理) 物理 心理治疗师 图像(数学) 生物 电信 经典力学 植物 心理学
作者
Ying Lei,Xingyu Li,Jinshan Huang,Lijun Liu
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:147 (10) 被引量:2
标识
DOI:10.1061/(asce)em.1943-7889.0001981
摘要

Much progress has been made in the assessment of structural damage and unknown input (UI) using incomplete and noisy measurement signals. The unscented Kalman filter (UKF) has proved to be a sophisticated approach to this task. A novel method using UKF with unknown input (UKF-UI) for recursive identification of a state-input system has been proposed by the authors. However, the purpose of this study was to propose the new UKF-UI framework and validate it with some simple structures. Although very limited research has been conducted on the UKF for health assessment of large structural systems, including two-dimensional (2D) and three-dimensional (3D) frame structures, it is based on a two-stage approach and requires full measurement of all acceleration, velocity, and displacement responses in the substructure containing the UI. Some implementations either have limitations in real-time identification or need assumptions on the time evolution of UI. One example is the random walk hypothesis, which heavily depends on the tuning of noise parameters. The application of UKF to large structural systems is still a challenging problem. This observation has prompted the authors to investigate the UKF-UI framework for identification of large structural systems. Here, it is extended to the assessment of damage and UI by the UKF-UI method for 2D and a 3D finite-element (FE) frame models. By the partially measured noise-polluted structural acceleration and displacement responses, the extent and location of damage is assessed at the element level. The unknown external excitations are simultaneously identified with no assumptions about the time evolutions of a one-stage identification process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助_蝴蝶小姐采纳,获得10
刚刚
刚刚
llllll完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
研友_nv4M28发布了新的文献求助10
4秒前
爱搬玉米完成签到,获得积分10
4秒前
根号3发布了新的文献求助10
5秒前
情怀应助称心语风采纳,获得10
5秒前
5秒前
Chili完成签到,获得积分10
6秒前
111发布了新的文献求助10
6秒前
三哥哥w完成签到,获得积分20
6秒前
向耀发布了新的文献求助10
7秒前
嘻嘻嘻发布了新的文献求助10
7秒前
耍酷千亦完成签到 ,获得积分10
7秒前
jun1357发布了新的文献求助10
7秒前
六点一横发布了新的文献求助10
8秒前
Alice完成签到,获得积分10
9秒前
三哥哥w发布了新的文献求助10
10秒前
苗子完成签到,获得积分10
10秒前
11秒前
千空应助pp采纳,获得10
11秒前
11秒前
浮游应助无名采纳,获得10
11秒前
12秒前
科研通AI2S应助欢喜的雁枫采纳,获得10
12秒前
李健应助xxx采纳,获得10
12秒前
伍文怡完成签到,获得积分10
12秒前
程程程完成签到,获得积分10
13秒前
13秒前
思源应助迟迟采纳,获得10
13秒前
14秒前
huanghe发布了新的文献求助10
15秒前
李爱国应助bobochi采纳,获得10
16秒前
17秒前
搜集达人应助STW采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069974
求助须知:如何正确求助?哪些是违规求助? 4291171
关于积分的说明 13369782
捐赠科研通 4111427
什么是DOI,文献DOI怎么找? 2251490
邀请新用户注册赠送积分活动 1256663
关于科研通互助平台的介绍 1189212