Machine learning applications in tobacco research: a scoping review

奇纳 心理信息 数据提取 梅德林 计算机科学 烟草控制 灰色文学 情报检索 系统回顾 人工智能 数据科学 医学 医学教育 公共卫生 病理 法学 政治学
作者
Rui Fu,Anasua Kundu,Nicholas Mitsakakis,Tara Elton-Marshall,Wei Wang,Sean Hill,Susan Bondy,Hayley Hamilton,Peter Selby,Robert Schwartz,Michael Chaiton
出处
期刊:Tobacco Control [BMJ]
卷期号:32 (1): 99-109 被引量:16
标识
DOI:10.1136/tobaccocontrol-2020-056438
摘要

Objective Identify and review the body of tobacco research literature that self-identified as using machine learning (ML) in the analysis. Data sources MEDLINE, EMABSE, PubMed, CINAHL Plus, APA PsycINFO and IEEE Xplore databases were searched up to September 2020. Studies were restricted to peer-reviewed, English-language journal articles, dissertations and conference papers comprising an empirical analysis where ML was identified to be the method used to examine human experience of tobacco. Studies of genomics and diagnostic imaging were excluded. Study selection Two reviewers independently screened the titles and abstracts. The reference list of articles was also searched. In an iterative process, eligible studies were classified into domains based on their objectives and types of data used in the analysis. Data extraction Using data charting forms, two reviewers independently extracted data from all studies. A narrative synthesis method was used to describe findings from each domain such as study design, objective, ML classes/algorithms, knowledge users and the presence of a data sharing statement. Trends of publication were visually depicted. Data synthesis 74 studies were grouped into four domains: ML-powered technology to assist smoking cessation (n=22); content analysis of tobacco on social media (n=32); smoker status classification from narrative clinical texts (n=6) and tobacco-related outcome prediction using administrative, survey or clinical trial data (n=14). Implications of these studies and future directions for ML researchers in tobacco control were discussed. Conclusions ML represents a powerful tool that could advance the research and policy decision-making of tobacco control. Further opportunities should be explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一口蛋黄苏完成签到,获得积分20
3秒前
4秒前
4秒前
细心的傥完成签到,获得积分10
5秒前
6秒前
禹无极发布了新的文献求助10
7秒前
江桥完成签到,获得积分20
8秒前
李志全完成签到 ,获得积分10
9秒前
zy完成签到,获得积分10
10秒前
10秒前
11秒前
pass发布了新的文献求助10
11秒前
超级惜芹发布了新的文献求助10
11秒前
时迹布景吾12138完成签到,获得积分10
12秒前
欧阳完成签到,获得积分10
12秒前
14秒前
完美世界应助灵魂风暴采纳,获得10
14秒前
14秒前
RIXI发布了新的文献求助10
15秒前
xiaojia完成签到,获得积分10
15秒前
16秒前
RBT发布了新的文献求助10
17秒前
pura卷卷发布了新的文献求助20
17秒前
上官若男应助Chris采纳,获得10
18秒前
20秒前
21秒前
djw发布了新的文献求助30
21秒前
顾矜应助RBT采纳,获得10
23秒前
24秒前
灵魂风暴完成签到,获得积分20
25秒前
hc完成签到,获得积分20
26秒前
Wilddeer完成签到 ,获得积分10
26秒前
完美的妙芹完成签到,获得积分10
27秒前
lwj完成签到,获得积分10
27秒前
独特秀发布了新的文献求助10
28秒前
狗蛋儿真棒棒完成签到,获得积分10
29秒前
WXY完成签到,获得积分10
30秒前
31秒前
英姑应助NJQ采纳,获得10
32秒前
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143779
求助须知:如何正确求助?哪些是违规求助? 2795335
关于积分的说明 7814327
捐赠科研通 2451315
什么是DOI,文献DOI怎么找? 1304413
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601419