A series of Cu‐pyrrolidone/spherical activated carbon (SAC) catalysts were prepared via a simple incipient wetness impregnation method and then assessed in acetylene hydrochlorination, and the catalytic evaluation result indicated that the 1‐methyl‐2‐pyrrolidinone (NMP) ligand was found to be the most effective one to significantly improve the activity and stability of Cu catalyst. The catalyst with the optimal molar ratio of NMP/Cu = 0.25 showed 94.2% acetylene conversion at 180°C and an acetylene gas hourly space velocity of 180 h −1 . Moreover, the acetylene conversion of Cu‐0.25NMP/SAC remained stable over 99.1% for about 220 h under the industrial condition. Transmission electron microscopy (TEM) analyses proved that NMP ligand improved the dispersion of Cu species. In addition, hydrogen temperature‐programmed reduction (H 2 ‐TPR), X‐ray photoelectron spectra (XPS), thermogravimetric analysis (TGA), and Brunner–Emmet–Teller (BET) indicated that the additive of NMP was preferential to stabilize the catalytic active Cu + and Cu 2+ species and inhibit the reduction of Cu α+ to Cu 0 during the preparation process and reaction, hence restraining the coke deposition. Furthermore, the steady coordination structure between Cu and NMP was confirmed by Fourier‐transform infrared spectra (FT‐IR) and Raman combining with density functional theory (DFT) calculation, which could effectively lower the adsorption energy of catalyst for C 2 H 2 and inhibit the serious carbon deposition caused by excessive acetylene self‐accumulation. Our findings suggest that the efficient, well‐stabilized cost‐effective, and environmentally friendly Cu catalyst has great potential in acetylene hydrochlorination.