Self-Supervised Multi-Modal Hybrid Fusion Network for Brain Tumor Segmentation

计算机科学 人工智能 情态动词 模式识别(心理学) 模态(人机交互) 背景(考古学) 分割 机器学习 串联(数学) 卷积神经网络 图像分割 特征(语言学) 生物 组合数学 哲学 古生物学 语言学 化学 高分子化学 数学
作者
Feiyi Fang,Yazhou Yao,Tao Zhou,Guo-Sen Xie,Jianfeng Lu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5310-5320 被引量:63
标识
DOI:10.1109/jbhi.2021.3109301
摘要

Accurate medical image segmentation of brain tumors is necessary for the diagnosing, monitoring, and treating disease. In recent years, with the gradual emergence of multi-sequence magnetic resonance imaging (MRI), multi-modal MRI diagnosis has played an increasingly important role in the early diagnosis of brain tumors by providing complementary information for a given lesion. Different MRI modalities vary significantly in context, as well as in coarse and fine information. As the manual identification of brain tumors is very complicated, it usually requires the lengthy consultation of multiple experts. The automatic segmentation of brain tumors from MRI images can thus greatly reduce the workload of doctors and buy more time for treating patients. In this paper, we propose a multi-modal brain tumor segmentation framework that adopts the hybrid fusion of modality-specific features using a self-supervised learning strategy. The algorithm is based on a fully convolutional neural network. Firstly, we propose a multi-input architecture that learns independent features from multi-modal data, and can be adapted to different numbers of multi-modal inputs. Compared with single-modal multi-channel networks, our model provides a better feature extractor for segmentation tasks, which learns cross-modal information from multi-modal data. Secondly, we propose a new feature fusion scheme, named hybrid attentional fusion. This scheme enables the network to learn the hybrid representation of multiple features and capture the correlation information between them through an attention mechanism. Unlike popular methods, such as feature map concatenation, this scheme focuses on the complementarity between multi-modal data, which can significantly improve the segmentation results of specific regions. Thirdly, we propose a self-supervised learning strategy for brain tumor segmentation tasks. Our experimental results demonstrate the effectiveness of the proposed model against other state-of-the-art multi-modal medical segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHD发布了新的文献求助10
1秒前
2秒前
2秒前
4秒前
JackeyChen发布了新的文献求助10
7秒前
张小小发布了新的文献求助10
7秒前
在水一方应助沉默烤鸡采纳,获得10
7秒前
123123发布了新的文献求助10
8秒前
qausyh完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
滴滴完成签到 ,获得积分10
9秒前
hohokuz完成签到,获得积分10
9秒前
9秒前
斐波拉切土豆完成签到 ,获得积分10
10秒前
随遇而安完成签到,获得积分10
10秒前
10秒前
缘分完成签到,获得积分0
11秒前
12秒前
12秒前
XIXIXI完成签到 ,获得积分10
13秒前
科研通AI6应助zzz采纳,获得10
14秒前
HHD完成签到,获得积分10
14秒前
隐形曼青应助张小小采纳,获得30
16秒前
勤劳滑板发布了新的文献求助10
16秒前
17秒前
啊哦呃发布了新的文献求助10
18秒前
yfy_fairy完成签到,获得积分10
20秒前
珈小羽完成签到,获得积分10
20秒前
20秒前
Jacky77应助Al采纳,获得30
20秒前
21秒前
这次会赢吗完成签到 ,获得积分10
22秒前
鹿港猫妖发布了新的文献求助10
24秒前
Jasper应助知性的半仙采纳,获得30
25秒前
情怀应助幻天游采纳,获得10
25秒前
26秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
华仔应助radish采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954193
求助须知:如何正确求助?哪些是违规求助? 4216522
关于积分的说明 13119572
捐赠科研通 3998767
什么是DOI,文献DOI怎么找? 2188476
邀请新用户注册赠送积分活动 1203652
关于科研通互助平台的介绍 1116064