Self-Supervised Multi-Modal Hybrid Fusion Network for Brain Tumor Segmentation

计算机科学 人工智能 情态动词 模式识别(心理学) 模态(人机交互) 背景(考古学) 分割 机器学习 串联(数学) 卷积神经网络 图像分割 特征(语言学) 生物 组合数学 哲学 古生物学 语言学 化学 高分子化学 数学
作者
Feiyi Fang,Yazhou Yao,Tao Zhou,Guo-Sen Xie,Jianfeng Lu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5310-5320 被引量:63
标识
DOI:10.1109/jbhi.2021.3109301
摘要

Accurate medical image segmentation of brain tumors is necessary for the diagnosing, monitoring, and treating disease. In recent years, with the gradual emergence of multi-sequence magnetic resonance imaging (MRI), multi-modal MRI diagnosis has played an increasingly important role in the early diagnosis of brain tumors by providing complementary information for a given lesion. Different MRI modalities vary significantly in context, as well as in coarse and fine information. As the manual identification of brain tumors is very complicated, it usually requires the lengthy consultation of multiple experts. The automatic segmentation of brain tumors from MRI images can thus greatly reduce the workload of doctors and buy more time for treating patients. In this paper, we propose a multi-modal brain tumor segmentation framework that adopts the hybrid fusion of modality-specific features using a self-supervised learning strategy. The algorithm is based on a fully convolutional neural network. Firstly, we propose a multi-input architecture that learns independent features from multi-modal data, and can be adapted to different numbers of multi-modal inputs. Compared with single-modal multi-channel networks, our model provides a better feature extractor for segmentation tasks, which learns cross-modal information from multi-modal data. Secondly, we propose a new feature fusion scheme, named hybrid attentional fusion. This scheme enables the network to learn the hybrid representation of multiple features and capture the correlation information between them through an attention mechanism. Unlike popular methods, such as feature map concatenation, this scheme focuses on the complementarity between multi-modal data, which can significantly improve the segmentation results of specific regions. Thirdly, we propose a self-supervised learning strategy for brain tumor segmentation tasks. Our experimental results demonstrate the effectiveness of the proposed model against other state-of-the-art multi-modal medical segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
胡桃完成签到 ,获得积分10
1秒前
091完成签到 ,获得积分10
2秒前
2秒前
李想发布了新的文献求助10
3秒前
KYTYYDS发布了新的文献求助200
3秒前
北陌完成签到,获得积分10
4秒前
万能图书馆应助远方采纳,获得10
4秒前
吞吞完成签到,获得积分10
5秒前
cy完成签到,获得积分10
6秒前
完美的水杯完成签到 ,获得积分10
6秒前
jiulei完成签到,获得积分10
6秒前
tt完成签到,获得积分10
7秒前
有信心完成签到 ,获得积分10
9秒前
uwu关闭了uwu文献求助
9秒前
10秒前
11秒前
11秒前
刘慧完成签到 ,获得积分10
12秒前
问你有没有发挥完成签到,获得积分10
13秒前
orixero应助嘁嘁嘁采纳,获得10
13秒前
14秒前
Ying完成签到,获得积分10
15秒前
DreamMaker应助文件撤销了驳回
15秒前
15秒前
15秒前
YFL发布了新的文献求助10
16秒前
顿手把其完成签到,获得积分10
18秒前
为十发布了新的文献求助10
18秒前
18秒前
顺利山柏发布了新的文献求助10
19秒前
冬虫夏草发布了新的文献求助10
20秒前
22秒前
22秒前
25秒前
嘁嘁嘁完成签到,获得积分10
25秒前
科研小白完成签到 ,获得积分10
28秒前
Gavin完成签到,获得积分10
28秒前
28秒前
嘁嘁嘁发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295297
求助须知:如何正确求助?哪些是违规求助? 4444855
关于积分的说明 13834820
捐赠科研通 4329178
什么是DOI,文献DOI怎么找? 2376556
邀请新用户注册赠送积分活动 1371823
关于科研通互助平台的介绍 1337080