亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-Supervised Multi-Modal Hybrid Fusion Network for Brain Tumor Segmentation

计算机科学 人工智能 情态动词 模式识别(心理学) 模态(人机交互) 背景(考古学) 分割 机器学习 串联(数学) 卷积神经网络 图像分割 特征(语言学) 生物 组合数学 哲学 古生物学 语言学 化学 高分子化学 数学
作者
Feiyi Fang,Yazhou Yao,Tao Zhou,Guo-Sen Xie,Jianfeng Lu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5310-5320 被引量:63
标识
DOI:10.1109/jbhi.2021.3109301
摘要

Accurate medical image segmentation of brain tumors is necessary for the diagnosing, monitoring, and treating disease. In recent years, with the gradual emergence of multi-sequence magnetic resonance imaging (MRI), multi-modal MRI diagnosis has played an increasingly important role in the early diagnosis of brain tumors by providing complementary information for a given lesion. Different MRI modalities vary significantly in context, as well as in coarse and fine information. As the manual identification of brain tumors is very complicated, it usually requires the lengthy consultation of multiple experts. The automatic segmentation of brain tumors from MRI images can thus greatly reduce the workload of doctors and buy more time for treating patients. In this paper, we propose a multi-modal brain tumor segmentation framework that adopts the hybrid fusion of modality-specific features using a self-supervised learning strategy. The algorithm is based on a fully convolutional neural network. Firstly, we propose a multi-input architecture that learns independent features from multi-modal data, and can be adapted to different numbers of multi-modal inputs. Compared with single-modal multi-channel networks, our model provides a better feature extractor for segmentation tasks, which learns cross-modal information from multi-modal data. Secondly, we propose a new feature fusion scheme, named hybrid attentional fusion. This scheme enables the network to learn the hybrid representation of multiple features and capture the correlation information between them through an attention mechanism. Unlike popular methods, such as feature map concatenation, this scheme focuses on the complementarity between multi-modal data, which can significantly improve the segmentation results of specific regions. Thirdly, we propose a self-supervised learning strategy for brain tumor segmentation tasks. Our experimental results demonstrate the effectiveness of the proposed model against other state-of-the-art multi-modal medical segmentation methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大国完成签到,获得积分20
1秒前
司空晓山发布了新的文献求助20
4秒前
C_关闭了C_文献求助
12秒前
曹兆发布了新的文献求助100
14秒前
失眠呆呆鱼完成签到 ,获得积分10
24秒前
kluberos完成签到 ,获得积分10
34秒前
39秒前
lvlv完成签到,获得积分10
42秒前
大国发布了新的文献求助10
47秒前
龙卡烧烤店完成签到,获得积分10
52秒前
saflgf完成签到,获得积分10
56秒前
OvO_4577完成签到,获得积分10
1分钟前
脑洞疼应助满意的世界采纳,获得10
1分钟前
汉堡包应助健忘的板凳采纳,获得10
1分钟前
jcksonzhj完成签到,获得积分10
1分钟前
761997580完成签到 ,获得积分10
1分钟前
Criminology34举报wert求助涉嫌违规
1分钟前
1分钟前
1分钟前
自然千山完成签到,获得积分10
1分钟前
斯文败类应助张志超采纳,获得10
1分钟前
1分钟前
共享精神应助waomi采纳,获得10
1分钟前
充电宝应助健忘的板凳采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
老迟到的梦旋完成签到 ,获得积分10
1分钟前
张志超发布了新的文献求助10
1分钟前
C_完成签到,获得积分20
1分钟前
1分钟前
852应助张志超采纳,获得10
1分钟前
一只小锦鲤完成签到 ,获得积分10
1分钟前
斯文败类应助yang采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599690
求助须知:如何正确求助?哪些是违规求助? 4685406
关于积分的说明 14838430
捐赠科研通 4669946
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898