Self-Supervised Multi-Modal Hybrid Fusion Network for Brain Tumor Segmentation

计算机科学 人工智能 情态动词 模式识别(心理学) 模态(人机交互) 背景(考古学) 分割 机器学习 串联(数学) 卷积神经网络 图像分割 特征(语言学) 生物 组合数学 哲学 古生物学 语言学 化学 高分子化学 数学
作者
Feiyi Fang,Yazhou Yao,Tao Zhou,Guo-Sen Xie,Jianfeng Lu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5310-5320 被引量:45
标识
DOI:10.1109/jbhi.2021.3109301
摘要

Accurate medical image segmentation of brain tumors is necessary for the diagnosing, monitoring, and treating disease. In recent years, with the gradual emergence of multi-sequence magnetic resonance imaging (MRI), multi-modal MRI diagnosis has played an increasingly important role in the early diagnosis of brain tumors by providing complementary information for a given lesion. Different MRI modalities vary significantly in context, as well as in coarse and fine information. As the manual identification of brain tumors is very complicated, it usually requires the lengthy consultation of multiple experts. The automatic segmentation of brain tumors from MRI images can thus greatly reduce the workload of doctors and buy more time for treating patients. In this paper, we propose a multi-modal brain tumor segmentation framework that adopts the hybrid fusion of modality-specific features using a self-supervised learning strategy. The algorithm is based on a fully convolutional neural network. Firstly, we propose a multi-input architecture that learns independent features from multi-modal data, and can be adapted to different numbers of multi-modal inputs. Compared with single-modal multi-channel networks, our model provides a better feature extractor for segmentation tasks, which learns cross-modal information from multi-modal data. Secondly, we propose a new feature fusion scheme, named hybrid attentional fusion. This scheme enables the network to learn the hybrid representation of multiple features and capture the correlation information between them through an attention mechanism. Unlike popular methods, such as feature map concatenation, this scheme focuses on the complementarity between multi-modal data, which can significantly improve the segmentation results of specific regions. Thirdly, we propose a self-supervised learning strategy for brain tumor segmentation tasks. Our experimental results demonstrate the effectiveness of the proposed model against other state-of-the-art multi-modal medical segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
爆米花应助WFLLL采纳,获得10
2秒前
shanage发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
小蘑菇应助Hearing胡采纳,获得10
3秒前
核武虎完成签到,获得积分10
3秒前
所所应助苹果向露采纳,获得10
4秒前
corre完成签到,获得积分10
4秒前
4秒前
4秒前
hh发布了新的文献求助10
5秒前
阿琳完成签到,获得积分20
5秒前
5秒前
龚仕杰完成签到 ,获得积分10
5秒前
5秒前
biozj完成签到 ,获得积分10
6秒前
6秒前
7秒前
XIEMIN发布了新的文献求助10
7秒前
暮霭沉沉应助poki采纳,获得10
7秒前
花开富贵发布了新的文献求助30
7秒前
7秒前
南希完成签到 ,获得积分10
8秒前
9秒前
lai完成签到,获得积分20
9秒前
自信鞯完成签到,获得积分10
10秒前
粽粽粽子关注了科研通微信公众号
10秒前
糖醋排骨发布了新的文献求助10
11秒前
11秒前
天天向上发布了新的文献求助10
11秒前
云朵完成签到,获得积分10
11秒前
charles发布了新的文献求助10
11秒前
Gentleman发布了新的文献求助10
11秒前
kkssrrrr发布了新的文献求助10
12秒前
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152657
求助须知:如何正确求助?哪些是违规求助? 2803891
关于积分的说明 7856198
捐赠科研通 2461571
什么是DOI,文献DOI怎么找? 1310444
科研通“疑难数据库(出版商)”最低求助积分说明 629205
版权声明 601782