Self-Supervised Multi-Modal Hybrid Fusion Network for Brain Tumor Segmentation

计算机科学 人工智能 情态动词 模式识别(心理学) 模态(人机交互) 背景(考古学) 分割 机器学习 串联(数学) 卷积神经网络 图像分割 特征(语言学) 生物 组合数学 哲学 古生物学 语言学 化学 高分子化学 数学
作者
Feiyi Fang,Yazhou Yao,Tao Zhou,Guo-Sen Xie,Jianfeng Lu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5310-5320 被引量:63
标识
DOI:10.1109/jbhi.2021.3109301
摘要

Accurate medical image segmentation of brain tumors is necessary for the diagnosing, monitoring, and treating disease. In recent years, with the gradual emergence of multi-sequence magnetic resonance imaging (MRI), multi-modal MRI diagnosis has played an increasingly important role in the early diagnosis of brain tumors by providing complementary information for a given lesion. Different MRI modalities vary significantly in context, as well as in coarse and fine information. As the manual identification of brain tumors is very complicated, it usually requires the lengthy consultation of multiple experts. The automatic segmentation of brain tumors from MRI images can thus greatly reduce the workload of doctors and buy more time for treating patients. In this paper, we propose a multi-modal brain tumor segmentation framework that adopts the hybrid fusion of modality-specific features using a self-supervised learning strategy. The algorithm is based on a fully convolutional neural network. Firstly, we propose a multi-input architecture that learns independent features from multi-modal data, and can be adapted to different numbers of multi-modal inputs. Compared with single-modal multi-channel networks, our model provides a better feature extractor for segmentation tasks, which learns cross-modal information from multi-modal data. Secondly, we propose a new feature fusion scheme, named hybrid attentional fusion. This scheme enables the network to learn the hybrid representation of multiple features and capture the correlation information between them through an attention mechanism. Unlike popular methods, such as feature map concatenation, this scheme focuses on the complementarity between multi-modal data, which can significantly improve the segmentation results of specific regions. Thirdly, we propose a self-supervised learning strategy for brain tumor segmentation tasks. Our experimental results demonstrate the effectiveness of the proposed model against other state-of-the-art multi-modal medical segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkk发布了新的文献求助10
1秒前
1秒前
1秒前
欧阳振应助沉寂的希望采纳,获得10
1秒前
爱逃不过初心完成签到,获得积分10
1秒前
王多肉完成签到,获得积分10
2秒前
福star高照完成签到,获得积分10
3秒前
3秒前
4秒前
zydaphne完成签到 ,获得积分10
4秒前
5秒前
5秒前
suiFeng完成签到,获得积分10
5秒前
OSASACB完成签到 ,获得积分10
5秒前
syfsyfsyf完成签到,获得积分20
6秒前
LZH完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
Yellue完成签到,获得积分10
7秒前
8秒前
饱满的鑫发布了新的文献求助10
8秒前
8秒前
LZH发布了新的文献求助10
8秒前
简单白风完成签到 ,获得积分10
8秒前
9秒前
9秒前
数学情缘发布了新的文献求助10
9秒前
右右发布了新的文献求助10
10秒前
10秒前
ouou发布了新的文献求助10
11秒前
11秒前
天真囧发布了新的文献求助10
12秒前
完美背包完成签到,获得积分10
12秒前
Tireastani应助hukun100采纳,获得30
12秒前
我先睡了发布了新的文献求助30
12秒前
萱1988发布了新的文献求助10
13秒前
大鲨鱼完成签到 ,获得积分10
13秒前
13秒前
zhangwj226完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600