动态规划
计算机科学
控制理论(社会学)
先验与后验
理论(学习稳定性)
李雅普诺夫函数
控制器(灌溉)
组分(热力学)
最优控制
贝尔曼方程
残余物
数学优化
功能(生物学)
自适应控制
过程(计算)
控制(管理)
数学
算法
人工智能
非线性系统
机器学习
热力学
认识论
操作系统
生物
物理
进化生物学
哲学
量子力学
农学
作者
Jie Huang,Zipeng Zhang,Fenghuang Cai,Yutao Chen
出处
期刊:IEEE Control Systems Letters
日期:2021-07-21
卷期号:6: 1412-1417
被引量:8
标识
DOI:10.1109/lcsys.2021.3098964
摘要
In this letter, an adaptive dynamic programming (ADP) method is proposed for optimized formation control of second-order linear systems. The method exploits an actor-critic architecture, where an actor component is used to learn the optimal formation controller, and a critic component is used to learn the optimal value function. Generally, ADP requires a priori knowledge of persistence of excitation (PE) to guarantee the stability of the control system. However, the PE condition is hard to verify during the learning process and in practical applications. To this end, this letter redesigns the updating laws of the actor and critic components to ensure that the Bellman residual error can eventually approach to zero, and the stability of the control system can be guaranteed without introducing the PE and additional constraints. By using Lyapunov stability analysis, we prove that the proposed optimized formation scheme can achieve the desired optimizing performance. Finally, a simulation example is given to demonstrate the effectiveness of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI