Microstructure controlled synthesis of Ni, N-codoped CoP/carbon fiber hybrids with improving reaction kinetics for superior sodium storage

材料科学 阳极 化学工程 电解质 电化学 微型多孔材料 纤维 储能 电化学动力学 碳纤维 微观结构 纳米技术 复合材料 复合数 电极 冶金 物理 量子力学 工程类 功率(物理) 化学 物理化学
作者
Huijun Li,Xiaomin Wang,Zhenxin Zhao,Rajesh Pathak,Siyue Hao,Xiaoming Qiu,Qiquan Qiao
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:99: 184-192 被引量:50
标识
DOI:10.1016/j.jmst.2021.05.034
摘要

Transition-metal phosphides (TMPs)-based hybrid structure have received considerable attention for efficient sodium storage owing to their high capacity and decent reversibility. However, the volume expansion & the poor electronic conductivity of TMPs, the poor-rate capability, and fast capacity decay greatly hinder its practical application. To address these issues, a low-cost and facile strategy for the synthesis of Ni, N-codoped graphitized carbon (C) and cobalt phosphide (CoP) embedded in carbon fiber ([email protected]⊂CF) as self-supporting anode material is demonstrated for the first time. The graphitized carbon and carbon fiber improve the electrical conductivity and inhibit the volume expansion issues. In addition to that, the microporous structure, and ultrasmall sized Ni-CoP offer a high surface area for electrolyte wettability, short Na-ion diffusion path and fast charge transport kinetics. As a result, outstanding electrochemical performance with an average capacity decay of 0.04% cycle−1 at 2000 mA g−1, an excellent rate capability of 270 mAh g−1@2000 mA g−1 and a high energy density of ~231.1 Wh kg−1 is achieved with binder-free self-supporting anode material. This work shows a potential for designing binder-free and high energy density sodium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一二发布了新的文献求助10
刚刚
tubonly完成签到,获得积分10
1秒前
充电宝应助我爱学习采纳,获得10
1秒前
顺心飞绿完成签到,获得积分10
3秒前
3秒前
3秒前
鸭梨发布了新的文献求助10
4秒前
小二郎应助ss采纳,获得10
4秒前
承乐发布了新的文献求助10
4秒前
开心的孤云完成签到,获得积分10
4秒前
4秒前
考拉完成签到,获得积分10
5秒前
maffei完成签到,获得积分10
5秒前
无极微光应助十米采纳,获得20
5秒前
小鹿完成签到,获得积分10
6秒前
6秒前
纳斯达克完成签到,获得积分10
7秒前
7秒前
8秒前
淡淡de橙子完成签到,获得积分10
8秒前
贝塔贝塔发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助调皮的滑板采纳,获得10
9秒前
bubu发布了新的文献求助10
9秒前
xixi发布了新的文献求助10
9秒前
10秒前
10秒前
xiaofeizhu发布了新的文献求助10
10秒前
深情安青应助刘丰铭采纳,获得10
10秒前
无极微光应助雷Lei采纳,获得20
11秒前
11秒前
11秒前
Eon发布了新的文献求助10
11秒前
13秒前
十把刀刀完成签到,获得积分10
13秒前
14秒前
隐形曼青应助美好的冷亦采纳,获得10
14秒前
xiasha完成签到 ,获得积分10
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809