Prognosis and Prediction of Breast Cancer Using Machine Learning and Ensemble-Based Training Model

随机森林 机器学习 人工智能 计算机科学 集成学习 支持向量机 混淆矩阵 人工神经网络 决策树 集合预报 投票 分类器(UML) 逻辑回归 政治 政治学 法学
作者
N.K. Gupta,Baij Nath Kaushik
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:66 (1): 70-85 被引量:2
标识
DOI:10.1093/comjnl/bxab145
摘要

Abstract There has been an increase in occurrence of human diseases all over the world. Among those, Breast Cancer has increased with an alarming rate in the past decade and this trend of increase would continue to grow. Now, there is a need for efficient text analytics and feature extraction tools to assist classifying, sharing and retrieving the information on human diseases in general and Breast Cancer in particular. In light of above, the present study has been undertaken with the objective to provide a comparative analysis of different classifiers on Breast Cancer dataset, and to propose a new ensemble training method of Machine Learning Classification. Here, machine learning models (such as K-Nearest Neighbour, Logistic Regression, Decision Tree, Random Forest, Gradient Boost, Support Vector Machine) and deep learning classifiers (such as Multi-Layer Feed Forward Neural Network, Recurrent Neural Network and Long Short Term Memory) have been applied on Breast Cancer dataset. An Ensemble Learning model for Prediction is proposed to classify the results among different classifiers. Finally, the Voting Ensemble is implemented to find out the optimal classifier for prediction of Breast Cancer. The results have been computed using the evaluation parameters such as Accuracy, Precision, Recall and Specificity. The confusion matrix drawn on the basis of evaluation parameters provides more emphasis on predicted and actual instances. Performance Evaluation for various machine learning models is computed. Results of this investigation concludes that Voting Ensemble outperforms other machine learning models. The prediction using Voting Ensemble resulted in an accuracy rate of 97.9 per cent, precision of 96.77 per cent and recall of 100 per cent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xxxx完成签到,获得积分20
刚刚
刚刚
紫紫完成签到 ,获得积分10
刚刚
科研通AI6应助威武鸽子采纳,获得10
1秒前
面包完成签到,获得积分10
1秒前
1秒前
小莹完成签到,获得积分10
3秒前
3秒前
liushiyi完成签到,获得积分10
3秒前
4秒前
zxx完成签到,获得积分0
5秒前
夏天发布了新的文献求助10
5秒前
大个应助小迪迦奥特曼采纳,获得10
6秒前
Jacob完成签到,获得积分10
7秒前
xxxx发布了新的文献求助10
7秒前
7秒前
科研混子完成签到,获得积分10
8秒前
samal完成签到 ,获得积分10
9秒前
热情礼貌一问三不知完成签到 ,获得积分10
9秒前
Kyle完成签到,获得积分10
10秒前
可爱的函函应助大大小采纳,获得10
10秒前
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
李健的粉丝团团长应助Iris采纳,获得10
13秒前
可爱的函函应助向语堂采纳,获得10
13秒前
13秒前
14秒前
14秒前
8湖公园发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
Nine发布了新的文献求助10
16秒前
小二郎应助木木的鱼三儿采纳,获得10
17秒前
科研通AI6应助酸酸茹采纳,获得10
17秒前
17秒前
小马甲应助小迪迦奥特曼采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484159
求助须知:如何正确求助?哪些是违规求助? 4584457
关于积分的说明 14398114
捐赠科研通 4514509
什么是DOI,文献DOI怎么找? 2474031
邀请新用户注册赠送积分活动 1459963
关于科研通互助平台的介绍 1433368