Prognosis and Prediction of Breast Cancer Using Machine Learning and Ensemble-Based Training Model

随机森林 机器学习 人工智能 计算机科学 集成学习 支持向量机 混淆矩阵 人工神经网络 决策树 集合预报 投票 分类器(UML) 逻辑回归 政治 政治学 法学
作者
N.K. Gupta,Baij Nath Kaushik
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:66 (1): 70-85 被引量:2
标识
DOI:10.1093/comjnl/bxab145
摘要

Abstract There has been an increase in occurrence of human diseases all over the world. Among those, Breast Cancer has increased with an alarming rate in the past decade and this trend of increase would continue to grow. Now, there is a need for efficient text analytics and feature extraction tools to assist classifying, sharing and retrieving the information on human diseases in general and Breast Cancer in particular. In light of above, the present study has been undertaken with the objective to provide a comparative analysis of different classifiers on Breast Cancer dataset, and to propose a new ensemble training method of Machine Learning Classification. Here, machine learning models (such as K-Nearest Neighbour, Logistic Regression, Decision Tree, Random Forest, Gradient Boost, Support Vector Machine) and deep learning classifiers (such as Multi-Layer Feed Forward Neural Network, Recurrent Neural Network and Long Short Term Memory) have been applied on Breast Cancer dataset. An Ensemble Learning model for Prediction is proposed to classify the results among different classifiers. Finally, the Voting Ensemble is implemented to find out the optimal classifier for prediction of Breast Cancer. The results have been computed using the evaluation parameters such as Accuracy, Precision, Recall and Specificity. The confusion matrix drawn on the basis of evaluation parameters provides more emphasis on predicted and actual instances. Performance Evaluation for various machine learning models is computed. Results of this investigation concludes that Voting Ensemble outperforms other machine learning models. The prediction using Voting Ensemble resulted in an accuracy rate of 97.9 per cent, precision of 96.77 per cent and recall of 100 per cent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助珊珊采纳,获得10
刚刚
刚刚
xin完成签到,获得积分10
1秒前
normankasimodo完成签到,获得积分10
1秒前
1秒前
2秒前
huan发布了新的文献求助150
2秒前
落落发布了新的文献求助10
3秒前
浮游应助不能随便采纳,获得10
3秒前
霍霍完成签到 ,获得积分10
4秒前
4秒前
wddd333333完成签到,获得积分10
5秒前
cc完成签到,获得积分10
5秒前
Feng完成签到,获得积分10
6秒前
随遇而安完成签到,获得积分10
6秒前
6秒前
mag完成签到,获得积分20
6秒前
6秒前
6秒前
7秒前
啦啦啦啦啦完成签到,获得积分10
7秒前
7秒前
8秒前
科研通AI6应助颜老大采纳,获得10
8秒前
Owen应助lwl采纳,获得10
8秒前
white完成签到 ,获得积分10
8秒前
8秒前
CipherSage应助化身孤岛的鲸采纳,获得10
8秒前
shuangZ完成签到,获得积分20
9秒前
涨涨发布了新的文献求助10
9秒前
youy发布了新的文献求助10
10秒前
10秒前
Huanglj完成签到,获得积分10
10秒前
只想毕业完成签到 ,获得积分10
10秒前
10秒前
10秒前
Jasper应助郭飒采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5326998
求助须知:如何正确求助?哪些是违规求助? 4467212
关于积分的说明 13900001
捐赠科研通 4359740
什么是DOI,文献DOI怎么找? 2394751
邀请新用户注册赠送积分活动 1388295
关于科研通互助平台的介绍 1359072