Prognosis and Prediction of Breast Cancer Using Machine Learning and Ensemble-Based Training Model

随机森林 机器学习 人工智能 计算机科学 集成学习 支持向量机 混淆矩阵 人工神经网络 决策树 集合预报 投票 分类器(UML) 逻辑回归 政治 政治学 法学
作者
N.K. Gupta,Baij Nath Kaushik
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:66 (1): 70-85 被引量:2
标识
DOI:10.1093/comjnl/bxab145
摘要

Abstract There has been an increase in occurrence of human diseases all over the world. Among those, Breast Cancer has increased with an alarming rate in the past decade and this trend of increase would continue to grow. Now, there is a need for efficient text analytics and feature extraction tools to assist classifying, sharing and retrieving the information on human diseases in general and Breast Cancer in particular. In light of above, the present study has been undertaken with the objective to provide a comparative analysis of different classifiers on Breast Cancer dataset, and to propose a new ensemble training method of Machine Learning Classification. Here, machine learning models (such as K-Nearest Neighbour, Logistic Regression, Decision Tree, Random Forest, Gradient Boost, Support Vector Machine) and deep learning classifiers (such as Multi-Layer Feed Forward Neural Network, Recurrent Neural Network and Long Short Term Memory) have been applied on Breast Cancer dataset. An Ensemble Learning model for Prediction is proposed to classify the results among different classifiers. Finally, the Voting Ensemble is implemented to find out the optimal classifier for prediction of Breast Cancer. The results have been computed using the evaluation parameters such as Accuracy, Precision, Recall and Specificity. The confusion matrix drawn on the basis of evaluation parameters provides more emphasis on predicted and actual instances. Performance Evaluation for various machine learning models is computed. Results of this investigation concludes that Voting Ensemble outperforms other machine learning models. The prediction using Voting Ensemble resulted in an accuracy rate of 97.9 per cent, precision of 96.77 per cent and recall of 100 per cent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助Qianyun采纳,获得30
1秒前
1秒前
1秒前
1秒前
Knight-1124发布了新的文献求助10
1秒前
1秒前
华仔应助徐智秀采纳,获得10
1秒前
1秒前
旺旺旺完成签到,获得积分20
2秒前
3秒前
和谐一万发布了新的文献求助10
4秒前
可口可乐发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
程之杭完成签到,获得积分10
6秒前
战战发布了新的文献求助10
6秒前
zengwr发布了新的文献求助10
8秒前
科研助手6应助神的女人采纳,获得10
9秒前
呼呼啦呼啦完成签到,获得积分10
10秒前
10秒前
Jasper应助sylnd126采纳,获得10
10秒前
哈哈发布了新的文献求助20
12秒前
Anita完成签到,获得积分10
12秒前
所所应助和谐一万采纳,获得10
13秒前
高有财完成签到 ,获得积分10
13秒前
13秒前
闪闪自中完成签到,获得积分10
14秒前
16秒前
jjym完成签到,获得积分10
17秒前
图南完成签到 ,获得积分10
17秒前
酷小裤完成签到,获得积分10
17秒前
18秒前
19秒前
项初蝶发布了新的文献求助10
19秒前
独特凡松发布了新的文献求助10
19秒前
19秒前
科研通AI5应助Luminous采纳,获得10
20秒前
傅寻菱完成签到,获得积分10
21秒前
方格发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021