数学
对数
四次方程
素数(序理论)
纯数学
单位(环理论)
领域(数学)
离散数学
数学分析
组合数学
数学教育
标识
DOI:10.4310/ajm.2021.v25.n2.a1
摘要
In this paper, we prove a result on the $2$-adic logarithm of the fundamental unit of the field $\mathbb{Q}(\sqrt[4]{-q}) $, where $q\equiv 3\bmod 4$ is a prime. When $q\equiv 15\bmod 16$, this result confirms a speculation of Coates-Li and has consequences for certain Iwasawa modules arising in their work.
科研通智能强力驱动
Strongly Powered by AbleSci AI